Nuprl Lemma : rotate-ring-property1

T:Type. L1,L2:T List.  (rotate-ring(T;L1;L2)  (x:T. ((x  L1)  (x  L2))))


Proof not projected




Definitions occuring in Statement :  rotate-ring: rotate-ring(T;L1;L2) all: x:A. B[x] iff: P  Q implies: P  Q list: type List universe: Type l_member: (x  l)
Definitions :  function: x:A  B[x] all: x:A. B[x] isect: x:A. B[x] uall: [x:A]. B[x] equal: s = t member: t  T rotate-ring: rotate-ring(T;L1;L2) universe: Type list: type List product: x:A  B[x] and: P  Q iff: P  Q prop: implies: P  Q exists: x:A. B[x] int_seg: {i..j} l_member: (x  l) rev_implies: P  Q int: length: ||as|| nat: cand: A c B less_than: a < b CollapseTHEN: Error :CollapseTHEN,  ifthenelse: if b then t else f fi  le_int: i z j add: n + m subtract: n - m MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  Auto: Error :Auto,  bool: select: l[i] natural_number: $n lt_int: i <z j set: {x:A| B[x]}  pair: <a, b> decide: case b of inl(x) =s[x] | inr(y) =t[y] lelt: i  j < k ge: i  j  le: A  B subtype: S  T rationals: real: not: A false: False void: Void minus: -n subtype_rel: A r B uiff: uiff(P;Q) uimplies: b supposing a strong-subtype: strong-subtype(A;B) sq_type: SQType(T) guard: {T} union: left + right unit: Unit bnot: b assert: b bor: p q band: p  q bimplies: p  q es-ble: e loc e' es-bless: e <loc e' es-eq-E: e = e' eq_lnk: a = b eq_id: a = b name_eq: name_eq(x;y) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) deq-disjoint: deq-disjoint(eq;as;bs) deq-member: deq-member(eq;x;L) q_le: q_le(r;s) q_less: q_less(r;s) qeq: qeq(r;s) eq_atom: eq_atom$n(x;y) eq_type: eq_type(T;T') b-exists: (i<n.P[i])_b bl-exists: (xL.P[x])_b bl-all: (xL.P[x])_b dcdr-to-bool: [d] infix_ap: x f y apply: f a grp_blt: a < b set_blt: a < b null: null(as) eq_atom: x =a y eq_int: (i = j) btrue: tt bfalse: ff limited-type: LimitedType or: P  Q so_apply: x[s] grp_car: |g| fpf: a:A fp-B[a] eclass: EClass(A[eo; e]) sqequal: s ~ t
Lemmas :  int_subtype_base bnot_of_lt_int bool_subtype_base subtype_base_sq bool_cases select_wf bnot_wf ifthenelse_wf le_int_wf int_seg_wf nat_wf member_wf not_wf false_wf length_wf_nat eqtt_to_assert assert_of_le_int le_wf uiff_transitivity eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int lt_int_wf nat_properties int_seg_properties bool_wf assert_wf l_member_wf rev_implies_wf iff_wf rotate-ring_wf

\mforall{}T:Type.  \mforall{}L1,L2:T  List.    (rotate-ring(T;L1;L2)  {}\mRightarrow{}  (\mforall{}x:T.  ((x  \mmember{}  L1)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L2))))


Date html generated: 2012_02_20-PM-05_54_21
Last ObjectModification: 2012_02_02-PM-02_29_09

Home Index