Nuprl Lemma : SM-gen-tr-exists

[S:Type]
  n:. m:{1..n + 1}.
    [A:k:{m..n + 1}  Type]
      btrs:k:{m..n + 1}  (bag(A k)  (Id  A k  S  S))
        [bp:bag(S)]. [l:Id].
          p:{m..n + 1}. (SM-gen-tr(l;btrs;bp;n;m) = (lifting-loc-2(snd((btrs p))) l (fst((btrs p))) bp))


Proof not projected




Definitions occuring in Statement :  SM-gen-tr: SM-gen-tr(l;btrs;bp;n;m) lifting-loc-2: lifting-loc-2(f) Id: Id int_seg: {i..j} nat_plus: uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) all: x:A. B[x] exists: x:A. B[x] apply: f a function: x:A  B[x] product: x:A  B[x] add: n + m natural_number: $n universe: Type equal: s = t bag: bag(T)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] member: t  T prop: implies: P  Q ge: i  j  le: A  B not: A false: False lelt: i  j < k int_seg: {i..j} SM-gen-tr: SM-gen-tr(l;btrs;bp;n;m) and: P  Q ycomb: Y ifthenelse: if b then t else f fi  btrue: tt top: Top subtype: S  T so_lambda: x.t[x] suptype: suptype(S; T) or: P  Q bfalse: ff nat_plus: nat: sq_type: SQType(T) uimplies: b supposing a guard: {T} so_apply: x[s] bool: unit: Unit uiff: uiff(P;Q) it:
Lemmas :  nat_plus_properties int_seg_properties subtype_base_sq int_subtype_base int_seg_wf nat_plus_wf nat_properties ge_wf bool_wf bool_subtype_base bor-btrue bnot_wf bag-null_wf le_wf pi1_wf_top bag_wf lifting-loc-2_wf pi2_wf Id_wf eq_int_eq_true bor_wf eq_int_wf assert_wf not_wf empty-bag_wf decidable__assert decidable_wf band_wf uiff_transitivity eqtt_to_assert assert_of_bor or_functionality_wrt_uiff assert_of_bnot not_functionality_wrt_uiff assert-bag-null assert_of_eq_int eqff_to_assert assert_functionality_wrt_uiff bnot_thru_bor assert_of_band and_functionality_wrt_uiff

\mforall{}[S:Type]
    \mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}m:\{1..n  +  1\msupminus{}\}.
        \mforall{}[A:k:\{m..n  +  1\msupminus{}\}  {}\mrightarrow{}  Type]
            \mforall{}btrs:k:\{m..n  +  1\msupminus{}\}  {}\mrightarrow{}  (bag(A  k)  \mtimes{}  (Id  {}\mrightarrow{}  A  k  {}\mrightarrow{}  S  {}\mrightarrow{}  S))
                \mforall{}[bp:bag(S)].  \mforall{}[l:Id].
                    \mexists{}p:\{m..n  +  1\msupminus{}\}
                      (SM-gen-tr(l;btrs;bp;n;m)  =  (lifting-loc-2(snd((btrs  p)))  l  (fst((btrs  p)))  bp))


Date html generated: 2011_10_20-PM-03_34_50
Last ObjectModification: 2011_08_17-PM-12_51_41

Home Index