{ dd:DeclSet. G:Graph(|dd|). T:Type. a:Id  Id  Id. b:Id.
    (es-decl-set-declares-tag{i:l}(dd;b;T)
     es-decl-set-declares-tag{i:l}(add-graph-decls(dd;G;T;a;b);b;T)) }

{ Proof }



Definitions occuring in Statement :  add-graph-decls: add-graph-decls(dd;G;T;a;b) es-decl-set-declares-tag: es-decl-set-declares-tag{i:l}(dd;b;T) es-decl-set-domain: |dd| es-decl-set: DeclSet id-graph: Graph(S) Id: Id all: x:A. B[x] implies: P  Q function: x:A  B[x] universe: Type
Definitions :  hasloc: hasloc(k;i) fpf: a:A fp-B[a] set: {x:A| B[x]}  fpf-ap: f(x) tagof: tag(k) isrcv: isrcv(k) apply: f a graph-rcvs: graph-rcvs(S;G;a;b;j) fpf-const: L |-fpf-v Kind-deq: KindDeq fpf-join: f  g fpf-domain: fpf-domain(f) list: type List es-decl-set-domain: |dd| member: t  T strong-subtype: strong-subtype(A;B) atom: Atom$n le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B isect: x:A. B[x] uall: [x:A]. B[x] Knd: Knd l_member: (x  l) assert: b equal: s = t implies: P  Q prop: Id: Id function: x:A  B[x] universe: Type id-graph: Graph(S) es-decl-set: DeclSet es-decl-set-declares-tag: es-decl-set-declares-tag{i:l}(dd;b;T) spreadn: spread3 add-graph-decls: add-graph-decls(dd;G;T;a;b) spread: spread def all: x:A. B[x] ParallelOp: Error :ParallelOp,  RepeatFor: Error :RepeatFor,  RepUR: Error :RepUR,  CollapseTHEN: Error :CollapseTHEN,  D: Error :D,  Auto: Error :Auto,  eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bnot: b bimplies: p  q band: p  q bor: p q true: True is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g squash: T sq_stable: SqStable(P) filter: filter(P;l) intensional-universe: IType natural_number: $n select: l[i] length: ||as|| real: grp_car: |g| subtype: S  T int: fpf-single: x : v fpf-cap: f(x)?z false: False rcv: rcv(l,tg) sq_type: SQType(T) iff: P  Q append: as @ bs locl: locl(a) eq_knd: a = b cand: A c B nat: so_apply: x[s] or: P  Q guard: {T} cons: [car / cdr] nil: [] lambda: x.A[x] limited-type: LimitedType so_lambda: x.t[x] decide: case b of inl(x) =s[x] | inr(y) =t[y] fpf-dom: x  dom(f) ifthenelse: if b then t else f fi  void: Void top: Top deq: EqDecider(T) exists: x:A. B[x] union: left + right pair: <a, b> bool: sqequal: s ~ t rev_implies: P  Q bfalse: ff btrue: tt unit: Unit pi2: snd(t)
Lemmas :  fpf-domain-join iff_wf true_wf false_wf bnot_wf not_wf bool_wf assert_of_bnot eqff_to_assert uiff_transitivity eqtt_to_assert fpf-dom_wf fpf-const-dom top_wf member_wf fpf_wf Kind-deq_wf graph-rcvs_wf fpf-const_wf fpf-join_wf fpf-domain_wf isrcv_wf tagof_wf ifthenelse_wf fpf-ap_wf fpf-join-ap-sq subtype_rel_wf fpf-trivial-subtype-top fpf-domain_wf2 uiff_inversion iff_weakening_uiff assert-eq-id subtype_base_sq nat_wf length_wf1 select_wf intensional-universe_wf list-subtype fpf-type subtype-fpf3 hasloc_wf strong-subtype_wf strong-subtype-set3 strong-subtype-self sq_stable__assert add-graph-decls_wf es-decl-set-declares-tag_wf id-graph_wf es-decl-set-domain_wf es-decl-set_wf Id_wf assert_wf l_member_wf Knd_wf

\mforall{}dd:DeclSet.  \mforall{}G:Graph(|dd|).  \mforall{}T:Type.  \mforall{}a:Id  {}\mrightarrow{}  Id  {}\mrightarrow{}  Id.  \mforall{}b:Id.
    (es-decl-set-declares-tag\{i:l\}(dd;b;T)
    {}\mRightarrow{}  es-decl-set-declares-tag\{i:l\}(add-graph-decls(dd;G;T;a;b);b;T))


Date html generated: 2011_08_16-AM-11_02_38
Last ObjectModification: 2011_06_18-AM-09_35_55

Home Index