{ [k:Knd]. [l:IdLnk].  uiff(isrcvl(l;k);(isrcv(k))  (lnk(k) = l)) }

{ Proof }



Definitions occuring in Statement :  isrcvl: isrcvl(l;k) lnk: lnk(k) isrcv: isrcv(k) Knd: Knd IdLnk: IdLnk assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] and: P  Q equal: s = t
Definitions :  limited-type: LimitedType iff: P  Q eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b apply: f a infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b bimplies: p  q bor: p q bnot: b int: intensional-universe: IType inr: inr x  inl: inl x  bfalse: ff unit: Unit bool: btrue: tt isl: isl(x) cand: A c B list: type List strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b atom: Atom$n Id: Id union: left + right subtype_rel: A r B universe: Type eq_lnk: a = b band: p  q isrcv: isrcv(k) axiom: Ax lnk: lnk(k) implies: P  Q pair: <a, b> void: Void false: False true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  prop: uall: [x:A]. B[x] Knd: Knd all: x:A. B[x] function: x:A  B[x] member: t  T isrcvl: isrcvl(l;k) uiff: uiff(P;Q) and: P  Q product: x:A  B[x] equal: s = t IdLnk: IdLnk assert: b uimplies: b supposing a isect: x:A. B[x] guard: {T} sqequal: s ~ t sq_type: SQType(T) set: {x:A| B[x]}  MaAuto: Error :MaAuto,  Complete: Error :Complete,  Try: Error :Try,  D: Error :D,  RepeatFor: Error :RepeatFor,  CollapseTHEN: Error :CollapseTHEN,  Unfold: Error :Unfold,  tactic: Error :tactic,  rev_implies: P  Q Auto: Error :Auto
Lemmas :  implies_functionality_wrt_iff assert-eq-lnk iff_wf rev_implies_wf subtype_base_sq bool_subtype_base assert_wf true_wf isrcv_wf ifthenelse_wf false_wf lnk_wf IdLnk_wf assert_witness uiff_wf Knd_wf band_wf eq_lnk_wf btrue_wf bool_wf bfalse_wf Id_wf member_wf unit_wf subtype_rel_wf intensional-universe_wf iff_weakening_uiff eqtt_to_assert not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf assert_elim eq_lnk_self

\mforall{}[k:Knd].  \mforall{}[l:IdLnk].    uiff(\muparrow{}isrcvl(l;k);(\muparrow{}isrcv(k))  \mwedge{}  (lnk(k)  =  l))


Date html generated: 2011_08_10-AM-07_48_21
Last ObjectModification: 2011_06_18-AM-08_13_05

Home Index