Nuprl Lemma : eq-sm-command_wf

[Op:Type]. [eq:EqDecider(Op)].  (eq-sm-command(eq)  EqDecider(sm-command(Op)))


Proof not projected




Definitions occuring in Statement :  eq-sm-command: eq-sm-command(eq) sm-command: sm-command(Op) uall: [x:A]. B[x] member: t  T universe: Type deq: EqDecider(T)
Definitions :  intensional-universe: IType so_lambda: x.t[x] in-eclass: e  X eq_knd: a = b fpf-dom: x  dom(f) eqof: eqof(d) IdLnk: IdLnk rationals: append: as @ bs locl: locl(a) Knd: Knd list: type List limited-type: LimitedType false: False decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  prop: rev_implies: P  Q pair: <a, b> spread: spread def apply: f a so_apply: x[s] implies: P  Q or: P  Q guard: {T} l_member: (x  l) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) fpf: a:A fp-B[a] subtype: S  T uimplies: b supposing a subtype_rel: A r B eclass: EClass(A[eo; e]) int: atom: Atom$n Id: Id product: x:A  B[x] union: left + right iff: P  Q spreadn: spread3 band: p  q eq_int: (i = j) eq_id: a = b lambda: x.A[x] set: {x:A| B[x]}  assert: b bool: function: x:A  B[x] all: x:A. B[x] sm-command: sm-command(Op) eq-sm-command: eq-sm-command(eq) axiom: Ax uall: [x:A]. B[x] isect: x:A. B[x] deq: EqDecider(T) member: t  T equal: s = t universe: Type is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g sq_stable: SqStable(P) true: True pi2: snd(t) void: Void top: Top pi1: fst(t) divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b cand: A c B l_contains: A  B inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) squash: T l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) sq_exists: x:{A| B[x]} i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i es-causl: (e < e') es-locl: (e <loc e') es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) exists: x:A. B[x] es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) cut-order: a (X;f) b path-goes-thru: x-f*-y thru i lg-edge: lg-edge(g;a;b) ses-action: Action(e) ses-legal-sequence: Legal(pas) given prvt decidable: Dec(P) rev_uimplies: rev_uimplies(P;Q) eq_bool: p =b q lt_int: i <z j le_int: i z j set_eq: = set_le: grp_eq: = rng_eq: = eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bnot: b bimplies: p  q bor: p q atom: Atom sq_type: SQType(T) sqequal: s ~ t Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  RepeatFor: Error :RepeatFor,  Unfold: Error :Unfold,  MaAuto: Error :MaAuto
Lemmas :  pi2_wf atom2_subtype_base int_subtype_base subtype_base_sq pi1_wf_top squash_wf Id_wf uiff_transitivity assert_of_band and_functionality_wrt_uiff assert-eq-id and_functionality_wrt_uiff2 assert_of_eq_int decidable_wf decidable__assert top_wf pi1_wf true_wf sq_stable__assert assert_wf ifthenelse_wf false_wf sm-command_wf eq_int_wf band_wf eq_id_wf member_wf bool_wf iff_wf deq_wf rev_implies_wf intensional-universe_wf subtype_rel_wf

\mforall{}[Op:Type].  \mforall{}[eq:EqDecider(Op)].    (eq-sm-command(eq)  \mmember{}  EqDecider(sm-command(Op)))


Date html generated: 2011_10_20-PM-04_07_33
Last ObjectModification: 2011_01_25-PM-01_08_04

Home Index