{ [Info,A:Type]. [P:A  ]. [X:EClass(A)].
    (X  EClass({a:A| P[a]} )) supposing 
       ((es:EO+(Info). e:E(X).  P[X(e)]) and 
       Singlevalued(X)) }

{ Proof }



Definitions occuring in Statement :  es-E-interface: E(X) sv-class: Singlevalued(X) eclass-val: X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) uimplies: b supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] member: t  T set: {x:A| B[x]}  function: x:A  B[x] universe: Type
Definitions :  guard: {T} implies: P  Q btrue: tt sq_type: SQType(T) bool: true: True in-eclass: e  X decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b eq_atom: x =a y eq_atom: eq_atom$n(x;y) dep-isect: Error :dep-isect,  record+: record+ subtype: S  T event_ordering: EO es-E: E lambda: x.A[x] eclass-val: X(e) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) void: Void false: False le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B axiom: Ax set: {x:A| B[x]}  event-ordering+: EO+(Info) top: Top es-E-interface: E(X) apply: f a so_apply: x[s] all: x:A. B[x] equal: s = t universe: Type function: x:A  B[x] uall: [x:A]. B[x] eclass: EClass(A[eo; e]) uimplies: b supposing a so_lambda: x y.t[x; y] prop: sv-class: Singlevalued(X) isect: x:A. B[x] member: t  T quotient: x,y:A//B[x; y] record-select: r.x suptype: suptype(S; T) natural_number: $n bag-size: bag-size(bs) AssertBY: Error :AssertBY,  Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  bag: bag(T) Complete: Error :Complete,  Try: Error :Try,  intensional-universe: IType so_lambda: x.t[x] token: "$token" is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g sq_stable: SqStable(P) tag-by: zT rev_implies: P  Q iff: P  Q record: record(x.T[x]) fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B fpf-cap: f(x)?z real: grp_car: |g| nat: null: null(as) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bnot: b bimplies: p  q band: p  q bor: p q int: permutation: permutation(T;L1;L2) list: type List bag-only: only(bs) eq_int: (i = j) union: left + right or: P  Q divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b cand: A c B l_member: (x  l) l_contains: A  B inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) squash: T l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) sq_exists: x:{A| B[x]} i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i infix_ap: x f y es-causl: (e < e') es-locl: (e <loc e') es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] same-thread: same-thread(es;p;e;e') es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) es-fset-loc: i  locs(s) decidable: Dec(P) exists: x:A. B[x] RepUR: Error :RepUR,  RepeatFor: Error :RepeatFor,  MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  sqequal: s ~ t nequal: a  b  T  tactic: Error :tactic,  deq: EqDecider(T) ma-state: State(ds) atom: Atom es-base-E: es-base-E(es) fpf-dom: x  dom(f) pair: <a, b> class-program: ClassProgram(T)
Lemmas :  squash_wf nequal_wf es-base-E_wf subtype_rel_self neg_assert_of_eq_int subtype-bag-empty subtype_rel_bag subtype-bag-only bag-size_wf nat_wf le_wf eq_int_wf assert_of_eq_int bag-only_wf permutation_wf decidable__assert sq_stable__assert intensional-universe_wf not_wf bag_wf eclass_wf event-ordering+_wf event-ordering+_inc es-E_wf sv-class_wf in-eclass_wf assert_elim bool_wf bool_subtype_base subtype_base_sq true_wf ifthenelse_wf false_wf assert_wf member_wf es-interface-top subtype_rel_wf eclass-val_wf es-E-interface_wf

\mforall{}[Info,A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[X:EClass(A)].
    (X  \mmember{}  EClass(\{a:A|  P[a]\}  ))  supposing  ((\mforall{}es:EO+(Info).  \mforall{}e:E(X).    P[X(e)])  and  Singlevalued(X))


Date html generated: 2011_08_16-PM-04_08_19
Last ObjectModification: 2011_06_20-AM-00_41_40

Home Index