{ [Info,A:Type]. [X:EClass(A)]. [Y:EClass(Top)].
    (right(Y+X) = X) supposing (X  Y = 0 and Singlevalued(X)) }

{ Proof }



Definitions occuring in Statement :  es-interface-disjoint: X  Y = 0 es-interface-union: X+Y es-interface-right: right(X) sv-class: Singlevalued(X) eclass: EClass(A[eo; e]) uimplies: b supposing a uall: [x:A]. B[x] top: Top universe: Type equal: s = t
Definitions :  bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} inr: inr x  empty-bag: {} inl: inl x  single-bag: {x} bag-separate: bag-separate(bs) pi2: snd(t) bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) limited-type: LimitedType bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q in-eclass: e  X bnot: b int: unit: Unit bool: eclass-compose2: eclass-compose2(f;X;Y) eclass-compose1: f o X atom: Atom es-base-E: es-base-E(es) token: "$token" so_apply: x[s] union: left + right or: P  Q guard: {T} l_member: (x  l) record-select: r.x set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  es-E-interface: E(X) implies: P  Q apply: f a eq_atom: x =a y eq_atom: eq_atom$n(x;y) dep-isect: Error :dep-isect,  record+: record+ bag: bag(T) subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) assert: b void: Void false: False le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] axiom: Ax es-interface-union: X+Y es-interface-right: right(X) equal: s = t universe: Type uall: [x:A]. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] sv-class: Singlevalued(X) uimplies: b supposing a member: t  T es-interface-disjoint: X  Y = 0 top: Top prop: isect: x:A. B[x] Repeat: Error :Repeat,  CollapseTHEN: Error :CollapseTHEN,  MaAuto: Error :MaAuto,  RepeatFor: Error :RepeatFor,  Unfold: Error :Unfold,  Auto: Error :Auto,  bag-map: bag-map(f;bs) bag-filter: [xb|p[x]] bag-mapfilter: bag-mapfilter(f;P;bs) RepUR: Error :RepUR,  tactic: Error :tactic,  real: grp_car: |g| nat: natural_number: $n bag-size: bag-size(bs) iff: P  Q rev_implies: P  Q THENM: Error :THENM,  CollapseTHENA: Error :CollapseTHENA,  true: True D: Error :D,  permutation: permutation(T;L1;L2) tl: tl(l) quotient: x,y:A//B[x; y] listp: A List ndlist: ndlist(T) list: type List nil: [] cons: [car / cdr] hd: hd(l) bag-only: only(bs) sqequal: s ~ t sq_type: SQType(T)
Lemmas :  subtype_base_sq bool_subtype_base bag-only_wf bag-size-one permutation_wf assert_elim eq_int_eq_true false_wf ifthenelse_wf true_wf nat_wf bag-size_wf assert_of_eq_int not_functionality_wrt_uiff empty-bag_wf rev_implies_wf iff_wf sv-class-iff eq_int_wf top_wf es-interface-right_wf es-interface-union_wf es-E_wf bag_wf event-ordering+_wf event-ordering+_inc eclass_wf sv-class_wf es-interface-disjoint_wf member_wf subtype_rel_wf es-interface-top es-base-E_wf subtype_rel_self bool_wf eqtt_to_assert assert_wf not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf in-eclass_wf

\mforall{}[Info,A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(Top)].
    (right(Y+X)  =  X)  supposing  (X  \mcap{}  Y  =  0  and  Singlevalued(X))


Date html generated: 2011_08_16-PM-06_03_49
Last ObjectModification: 2011_06_20-AM-01_46_49

Home Index