{ [Info:Type]. [es:EO+(Info)]. [X,Y:EClass(Top)].
    [e:E]. e  prior(Y) supposing e  prior(X) 
    supposing e:E. ((e  X)  (e  prior(X))  (e  Y)) }

{ Proof }



Definitions occuring in Statement :  es-prior-interface: prior(X) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] not: A implies: P  Q universe: Type
Definitions :  es-interface-at: X@i es-local-pred: last(P) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) false: False true: True void: Void set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] es-E-interface: E(X) es-prior-interface: prior(X) in-eclass: e  X prop: not: A assert: b implies: P  Q uimplies: b supposing a union: left + right subtype: S  T subtype_rel: A r B atom: Atom apply: f a token: "$token" ifthenelse: if b then t else f fi  record-select: r.x top: Top event_ordering: EO es-E: E lambda: x.A[x] dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] universe: Type member: t  T event-ordering+: EO+(Info) equal: s = t tactic: Error :tactic,  record: record(x.T[x]) infix_ap: x f y cond-class: [X?Y] so_apply: x[s] or: P  Q guard: {T} eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) fpf: a:A fp-B[a] list: type List squash: T es-causl: (e < e') limited-type: LimitedType real: grp_car: |g| minus: -n add: n + m subtract: n - m natural_number: $n int: nat: exists: x:A. B[x] strongwellfounded: SWellFounded(R[x; y]) pair: <a, b> bool: Id: Id divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b cand: A c B l_contains: A  B inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') decidable: Dec(P) es-locl: (e <loc e') iff: P  Q rev_implies: P  Q
Lemmas :  es-locl_wf Id_wf es-causl_weakening es-locl_transitivity2 es-le_weakening is-prior-interface decidable__assert es-causl-swellfnd nat_wf nat_properties ge_wf le_wf es-causl_wf uiff_inversion event-ordering+_wf event-ordering+_inc subtype_rel_self es-E_wf top_wf es-E-interface_wf subtype_rel_wf es-prior-interface_wf es-interface-subtype_rel2 member_wf eclass_wf es-prior-interface_wf1 es-prior-interface_wf0 in-eclass_wf assert_wf not_wf assert_witness false_wf ifthenelse_wf true_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].
    \mforall{}[e:E].  \muparrow{}e  \mmember{}\msubb{}  prior(Y)  supposing  \muparrow{}e  \mmember{}\msubb{}  prior(X) 
    supposing  \mforall{}e:E.  ((\muparrow{}e  \mmember{}\msubb{}  X)  {}\mRightarrow{}  (\mneg{}\muparrow{}e  \mmember{}\msubb{}  prior(X))  {}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  Y))


Date html generated: 2011_08_16-PM-04_47_42
Last ObjectModification: 2011_06_20-AM-01_05_27

Home Index