{ [A:Type]. [eq:EqDecider(A)]. [df:x:A fp-Type]. [f:x:A fp-df(x)?Top].
  [dg:x:A fp-Type]. [g:x:A fp-dg(x)?Top].
    (f  g  x:A fp-df  dg(x)?Top) supposing 
       ((x:A. ((x  dom(g))  (x  dom(dg)))) and 
       (x:A. ((x  dom(f))  (x  dom(df)))) and 
       df || dg) }

{ Proof }



Definitions occuring in Statement :  fpf-join: f  g fpf-compatible: f || g fpf-cap: f(x)?z fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] implies: P  Q member: t  T universe: Type deq: EqDecider(T)
Definitions :  all: x:A. B[x] implies: P  Q member: t  T prop: so_lambda: x.t[x] fpf: a:A fp-B[a] fpf-join: f  g fpf-dom: x  dom(f) pi1: fst(t) fpf-cap: f(x)?z ifthenelse: if b then t else f fi  btrue: tt bfalse: ff rev_implies: P  Q iff: P  Q and: P  Q assert: b or: P  Q true: True top: Top uall: [x:A]. B[x] so_apply: x[s] bool: unit: Unit uimplies: b supposing a not: A false: False sq_type: SQType(T) guard: {T} fpf-compatible: f || g it:
Lemmas :  assert_wf fpf-dom_wf fpf-trivial-subtype-top fpf-cap_wf top_wf fpf-compatible_wf fpf_wf deq_wf append_wf filter_wf bnot_wf deq-member_wf bool_wf not_wf iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot fpf-ap_wf fpf-join_wf fpf-join-ap subtype_rel_self fpf-join-dom subtype_base_sq bool_subtype_base assert_elim member_append not_functionality_wrt_iff l_member_wf assert-deq-member member_filter

\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[df:x:A  fp->  Type].  \mforall{}[f:x:A  fp->  df(x)?Top].  \mforall{}[dg:x:A  fp->  Type].
\mforall{}[g:x:A  fp->  dg(x)?Top].
    (f  \moplus{}  g  \mmember{}  x:A  fp->  df  \moplus{}  dg(x)?Top)  supposing 
          ((\mforall{}x:A.  ((\muparrow{}x  \mmember{}  dom(g))  {}\mRightarrow{}  (\muparrow{}x  \mmember{}  dom(dg))))  and 
          (\mforall{}x:A.  ((\muparrow{}x  \mmember{}  dom(f))  {}\mRightarrow{}  (\muparrow{}x  \mmember{}  dom(df))))  and 
          df  ||  dg)


Date html generated: 2011_08_10-AM-08_00_08
Last ObjectModification: 2011_06_18-AM-08_19_20

Home Index