{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top + Top)]. [e:E].
    uiff(e  left(X);(e  X)  (isl(X(e)))) }

{ Proof }



Definitions occuring in Statement :  es-interface-left: left(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E isl: isl(x) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] top: Top and: P  Q union: left + right universe: Type
Definitions :  intensional-universe: IType so_lambda: x.t[x] tag-by: zT fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B list: type List fpf-cap: f(x)?z bool: record: record(x.T[x]) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g squash: T sq_stable: SqStable(P) cand: A c B cond-class: [X?Y] so_apply: x[s] or: P  Q guard: {T} eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) fpf: a:A fp-B[a] es-E-interface: E(X) eclass-val: X(e) isl: isl(x) strong-subtype: strong-subtype(A;B) set: {x:A| B[x]}  le: A  B ge: i  j  not: A less_than: a < b es-interface-left: left(X) in-eclass: e  X rev_implies: P  Q iff: P  Q implies: P  Q prop: pair: <a, b> void: Void false: False true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) bag: bag(T) subtype: S  T subtype_rel: A r B atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  record-select: r.x top: Top union: left + right event_ordering: EO es-E: E lambda: x.A[x] dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] universe: Type member: t  T event-ordering+: EO+(Info) equal: s = t tactic: Error :tactic,  quotient: x,y:A//B[x; y] bag-separate: bag-separate(bs) pi1: fst(t) bag-only: only(bs) bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} lt_int: i <z j le_int: i z j bfalse: ff real: grp_car: |g| nat: limited-type: LimitedType btrue: tt null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q natural_number: $n bag-size: bag-size(bs) eq_int: (i = j) bnot: b int: unit: Unit eclass-compose1: f o X bag-map: bag-map(f;bs) bag-filter: [xb|p[x]] bag-mapfilter: bag-mapfilter(f;P;bs) hd: hd(l) single-bag: {x} sqequal: s ~ t
Lemmas :  bag-size-one eq_int_wf not_wf nat_wf bag-size_wf bnot_wf assert_of_eq_int not_functionality_wrt_uiff assert_of_bnot uiff_transitivity eqff_to_assert eqtt_to_assert bag_wf bag-separate_wf pi1_wf pi1_wf_top bag-only_wf assert_wf true_wf isl_wf ifthenelse_wf false_wf in-eclass_wf assert_witness uiff_wf event-ordering+_inc subtype_rel_self es-base-E_wf es-E_wf event-ordering+_wf top_wf eclass_wf es-interface-left_wf eclass-val_wf member_wf subtype_rel_wf es-interface-top rev_implies_wf iff_wf sq_stable__assert bool_wf intensional-universe_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top  +  Top)].  \mforall{}[e:E].
    uiff(\muparrow{}e  \mmember{}\msubb{}  left(X);(\muparrow{}e  \mmember{}\msubb{}  X)  \mwedge{}  (\muparrow{}isl(X(e))))


Date html generated: 2011_08_16-PM-04_19_22
Last ObjectModification: 2011_06_20-AM-00_48_08

Home Index