{ [Info,T,A,B:Type]. [f:A  T]. [g:B  T]. [X:EClass(A)]. [Y:EClass(B)].
    (f[a] where a from X) = (g[b] where b from Y) 
    supposing es:EO+(Info). e:E.
                ((e  X  e  Y)
                 ((e  X)  (e  Y)  (f[X(e)] = g[Y(e)]))) }

{ Proof }



Definitions occuring in Statement :  map-class: (f[v] where v from X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: P  Q implies: P  Q and: P  Q function: x:A  B[x] universe: Type equal: s = t
Definitions :  sqequal: s ~ t intensional-universe: IType tag-by: zT fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B fpf-cap: f(x)?z record: record(x.T[x]) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g squash: T cond-class: [X?Y] void: Void true: True false: False sv-class: Singlevalued(X) cand: A c B atom: Atom es-base-E: es-base-E(es) token: "$token" bool: Knd: Knd IdLnk: IdLnk Id: Id rationals: sq_stable: SqStable(P) union: left + right or: P  Q guard: {T} eq_knd: a = b list: type List l_member: (x  l) fpf-dom: x  dom(f) bag: bag(T) record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) set: {x:A| B[x]}  dep-isect: Error :dep-isect,  record+: record+ lambda: x.A[x] es-E-interface: E(X) eclass-val: X(e) limited-type: LimitedType in-eclass: e  X subtype: S  T top: Top so_lambda: x.t[x] pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) rev_implies: P  Q decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  le: A  B ge: i  j  not: A less_than: a < b uiff: uiff(P;Q) subtype_rel: A r B axiom: Ax apply: f a so_apply: x[s] map-class: (f[v] where v from X) prop: event-ordering+: EO+(Info) event_ordering: EO es-E: E iff: P  Q assert: b implies: P  Q product: x:A  B[x] and: P  Q all: x:A. B[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) uimplies: b supposing a equal: s = t universe: Type uall: [x:A]. B[x] function: x:A  B[x] member: t  T isect: x:A. B[x] MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  THENM: Error :THENM,  Try: Error :Try,  natural_number: $n bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b int: unit: Unit eclass-compose1: f o X es-filter-image: f[X] Auto: Error :Auto
Lemmas :  eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf not_wf assert_wf eclass_wf map-class_wf event-ordering+_wf es-E_wf iff_wf event-ordering+_inc in-eclass_wf eclass-val_wf member_wf subtype_rel_wf es-interface-top uall_wf es-base-E_wf subtype_rel_self es-interface-extensionality sv-class_wf le_wf false_wf ifthenelse_wf true_wf top_wf rev_implies_wf sq_stable__assert bool_wf intensional-universe_wf is-map-class map-class-val

\mforall{}[Info,T,A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  T].  \mforall{}[g:B  {}\mrightarrow{}  T].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].
    (f[a]  where  a  from  X)  =  (g[b]  where  b  from  Y) 
    supposing  \mforall{}es:EO+(Info).  \mforall{}e:E.
                            ((\muparrow{}e  \mmember{}\msubb{}  X  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e  \mmember{}\msubb{}  Y)  \mwedge{}  ((\muparrow{}e  \mmember{}\msubb{}  X)  {}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  Y)  {}\mRightarrow{}  (f[X(e)]  =  g[Y(e)])))


Date html generated: 2011_08_16-PM-04_15_40
Last ObjectModification: 2011_06_20-AM-00_44_50

Home Index