{ [Info:Type]
    es:EO+(Info). X:EClass(Top). f:E(X)  E(X).
      ((x:E(X). f x c x)  (e:E(X). (f**(e)  prior-f-fixedpoints(e)))) }

{ Proof }



Definitions occuring in Statement :  es-prior-fixedpoints: prior-f-fixedpoints(e) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-fix: f**(e) es-causle: e c e' uall: [x:A]. B[x] top: Top all: x:A. B[x] implies: P  Q apply: f a function: x:A  B[x] universe: Type l_member: (x  l)
Definitions :  sqequal: s ~ t intensional-universe: IType es-interface-val: val(X,e) record: record(x.T[x]) atom: Atom es-base-E: es-base-E(es) token: "$token" append: as @ bs rev_implies: P  Q iff: P  Q map: map(f;as) cons: [car / cdr] hd: hd(l) last: last(L) remove-repeats: remove-repeats(eq;L) select: l[i] infix_ap: x f y es-causl: (e < e') sq_stable: SqStable(P) so_apply: x[s] guard: {T} es-prior-fixedpoints: prior-f-fixedpoints(e) es-fix: f**(e) so_lambda: x.t[x] top: Top lambda: x.A[x] fpf: a:A fp-B[a] record-select: r.x es-E: E apply: f a subtype: S  T member: t  T strong-subtype: strong-subtype(A;B) union: left + right or: P  Q eq_atom: x =a y eq_atom: eq_atom$n(x;y) decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype_rel: A r B less_than: a < b equal: s = t cand: A c B uall: [x:A]. B[x] isect: x:A. B[x] so_lambda: x y.t[x; y] implies: P  Q es-causle: e c e' event_ordering: EO prop: exists: x:A. B[x] product: x:A  B[x] nat: set: {x:A| B[x]}  es-E-interface: E(X) all: x:A. B[x] function: x:A  B[x] eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) l_member: (x  l) universe: Type MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  false: False limited-type: LimitedType pair: <a, b> isl: isl(x) can-apply: can-apply(f;x) in-eclass: e  X suptype: suptype(S; T) bnot: b bimplies: p  q band: p  q bor: p q bfalse: ff sq_type: SQType(T) btrue: tt bool: es-eq-E: e = e' CollapseTHENA: Error :CollapseTHENA,  natural_number: $n real: grp_car: |g| int: length: ||as|| nil: [] filter: filter(P;l) eclass-val: X(e) list: type List void: Void eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b CollapseTHENM: Error :CollapseTHENM,  Try: Error :Try,  es-prior-interface: prior(X) fun-connected: y is f*(x)
Lemmas :  es-fix_property es-prior-interface_wf es-interface-subtype_rel2 es-prior-interface_wf1 es-prior-interface_wf0 in-eclass_wf member_append member_singleton es-prior-fixedpoints_wf eclass-val_wf2 list-subtype length_wf1 select_wf es-eq-E_wf assert-es-eq-E-2 not_functionality_wrt_uiff assert_of_bnot uiff_transitivity not_wf iff_weakening_uiff eqff_to_assert eqtt_to_assert bool_subtype_base subtype_base_sq bool_wf bool_cases strong-subtype_wf strong-subtype-self es-fix_wf2 bnot_wf false_wf es-E_wf top_wf event-ordering+_wf eclass_wf es-E-interface_wf member_wf subtype_rel_wf event-ordering+_inc es-causle_wf nat_wf l_member_wf uall_wf uiff_inversion es-fix_wf l_member_subtype es-base-E_wf subtype_rel_self assert_wf intensional-universe_wf es-causl_wf es-E-interface-subtype_rel es-prior-fixedpoints-fix

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:E(X)  {}\mrightarrow{}  E(X).
        ((\mforall{}x:E(X).  f  x  c\mleq{}  x)  {}\mRightarrow{}  (\mforall{}e:E(X).  (f**(e)  \mmember{}  prior-f-fixedpoints(e))))


Date html generated: 2011_08_16-PM-05_43_54
Last ObjectModification: 2011_06_20-AM-01_31_52

Home Index