{ norm-esharp-program() 
 id-fun(E#Program) }
{ Proof }
Definitions occuring in Statement : 
norm-esharp-program: norm-esharp-program(), 
esharp-program: E#Program, 
member: t 
 T, 
id-fun: id-fun(T)
Definitions : 
member: t 
 T, 
equal: s = t, 
function: x:A 
 B[x], 
all:
x:A. B[x], 
set: {x:A| B[x]} , 
intensional-universe: IType, 
fpf: a:A fp-> B[a], 
subtype: S 
 T, 
eclass: EClass(A[eo; e]), 
implies: P 
 Q, 
es-E-interface: E(X), 
product: x:A 
 B[x], 
exists:
x:A. B[x], 
tag-by: z
T, 
union: left + right, 
or: P 
 Q, 
rev_implies: P 
 Q, 
and: P 
 Q, 
iff: P 

 Q, 
ldag: LabeledDAG(T), 
labeled-graph: LabeledGraph(T), 
record: record(x.T[x]), 
isect2: T1 
 T2, 
record+: record+, 
fset: FSet{T}, 
isect:
x:A. B[x], 
b-union: A 
 B, 
list: type List, 
top: Top, 
true: True, 
fpf-sub: f 
 g, 
fpf-cap: f(x)?z, 
deq: EqDecider(T), 
ma-state: State(ds), 
class-program: ClassProgram(T), 
strong-subtype: strong-subtype(A;B), 
nat:
, 
apply: f a, 
so_apply: x[s], 
prop:
, 
less_than: a < b, 
bool:
, 
not:
A, 
add: n + m, 
length: ||as||, 
int:
, 
nil: [], 
select: l[i], 
natural_number: $n, 
int_seg: {i..j
}, 
cand: A c
 B, 
void: Void, 
inr: inr x , 
it:
, 
pair: <a, b>, 
assert:
b, 
false: False, 
bfalse: ff, 
unit: Unit, 
le: A 
 B, 
ge: i 
 j , 
lelt: i 
 j < k, 
l_member: (x 
 l), 
guard: {T}, 
lambda:
x.A[x], 
real:
, 
rationals:
, 
grp_car: |g|, 
decide: case b of inl(x) => s[x] | inr(y) => t[y], 
ifthenelse: if b then t else f fi , 
sq_stable: SqStable(P), 
eq_knd: a = b, 
fpf-dom: x 
 dom(f), 
in-eclass: e 
 X, 
bnot: 
b, 
btrue: tt, 
eq_bool: p =b q, 
lt_int: i <z j, 
le_int: i 
z j, 
eq_int: (i =
 j), 
eq_atom: x =a y, 
null: null(as), 
infix_ap: x f y, 
set_blt: a <
 b, 
grp_blt: a <
 b, 
dcdr-to-bool: [d]
, 
bl-all: (
x
L.P[x])_b, 
bl-exists: (
x
L.P[x])_b, 
b-exists: (
i<n.P[i])_b, 
eq_type: eq_type(T;T'), 
eq_atom: eq_atom$n(x;y), 
qeq: qeq(r;s), 
q_less: q_less(r;s), 
q_le: q_le(r;s), 
deq-member: deq-member(eq;x;L), 
deq-disjoint: deq-disjoint(eq;as;bs), 
deq-all-disjoint: deq-all-disjoint(eq;ass;bs), 
eq_str: Error :eq_str, 
eq_id: a = b, 
eq_lnk: a = b, 
es-eq-E: e = e', 
bimplies: p 

 q, 
band: p 
 q, 
bor: p 
q, 
so_lambda: 
x.t[x], 
rec: rec(x.A[x]), 
quotient: x,y:A//B[x; y], 
tunion:
x:A.B[x], 
type-monotone: Monotone(T.F[T]), 
name: Name, 
Id: Id, 
norm-pair: norm-pair(Na;Nb), 
norm-list: norm-list(N), 
norm-union: norm-union(Na;Nb), 
norm-base-deriv: norm-base-deriv(), 
norm-combinator-def: norm-combinator-def(), 
id-fun: id-fun(T), 
esharp-rule: E#Rule, 
norm-esharp-rule: norm-esharp-rule(), 
esharp-program: E#Program, 
sq-id-fun: sq-id-fun(T), 
norm-esharp-program: norm-esharp-program(), 
universe: Type, 
limited-type: LimitedType, 
subtype_rel: A 
r B, 
combinator-def: CombinatorDef, 
value-type: value-type(T), 
classderiv: ClassDerivation, 
base-deriv: BaseDef, 
expression: Expression, 
atom: Atom$n, 
atom: Atom, 
cdv-wf: WF(dv), 
cdv-types: cdv-types(dv), 
esharp-env: E#Env
Lemmas : 
norm-pair_wf, 
norm-union_wf, 
norm-combinator-def_wf, 
atom-value-type, 
combinator-def_wf, 
classderiv_wf, 
cdv-wf_wf, 
cdv-types_wf, 
expression_wf, 
esharp-program_wf, 
id-fun_wf, 
norm-esharp-rule_wf, 
esharp-rule_wf, 
norm-list_wf, 
norm-base-deriv_wf, 
Id_wf, 
name_wf, 
type-monotone_wf, 
subtype_rel_sum, 
subtype_rel_product, 
subtype_rel_simple_product, 
base-deriv_wf, 
value-type_wf, 
function-value-type, 
union-value-type, 
bunion-value-type, 
tunion-value-type, 
set-value-type, 
quotient-value-type, 
rec-value-type, 
equal-value-type, 
type-value-type, 
list-value-type, 
product-value-type, 
it_wf, 
unit_wf, 
ifthenelse_wf, 
eqtt_to_assert, 
iff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
bnot_wf, 
not_wf, 
assert_wf, 
nat_properties, 
select_wf, 
int_seg_properties, 
int_seg_wf, 
length_wf_nat, 
bfalse_wf, 
top_wf, 
bool_wf, 
length_wf1, 
nat_wf, 
subtype_rel_wf, 
intensional-universe_wf, 
member_wf, 
limited-type_wf
norm-esharp-program()  \mmember{}  id-fun(E\#Program)
Date html generated:
2011_08_17-PM-04_38_31
Last ObjectModification:
2010_09_21-PM-02_02_24
Home
Index