{ norm-esharp-program()  id-fun(E#Program) }

{ Proof }



Definitions occuring in Statement :  norm-esharp-program: norm-esharp-program() esharp-program: E#Program member: t  T id-fun: id-fun(T)
Definitions :  member: t  T equal: s = t function: x:A  B[x] all: x:A. B[x] set: {x:A| B[x]}  intensional-universe: IType fpf: a:A fp-B[a] subtype: S  T eclass: EClass(A[eo; e]) implies: P  Q es-E-interface: E(X) product: x:A  B[x] exists: x:A. B[x] tag-by: zT union: left + right or: P  Q rev_implies: P  Q and: P  Q iff: P  Q ldag: LabeledDAG(T) labeled-graph: LabeledGraph(T) record: record(x.T[x]) isect2: T1  T2 record+: record+ fset: FSet{T} isect: x:A. B[x] b-union: A  B list: type List top: Top true: True fpf-sub: f  g fpf-cap: f(x)?z deq: EqDecider(T) ma-state: State(ds) class-program: ClassProgram(T) strong-subtype: strong-subtype(A;B) nat: apply: f a so_apply: x[s] prop: less_than: a < b bool: not: A add: n + m length: ||as|| int: nil: [] select: l[i] natural_number: $n int_seg: {i..j} cand: A c B void: Void inr: inr x  it: pair: <a, b> assert: b false: False bfalse: ff unit: Unit le: A  B ge: i  j  lelt: i  j < k l_member: (x  l) guard: {T} lambda: x.A[x] real: rationals: grp_car: |g| decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  sq_stable: SqStable(P) eq_knd: a = b fpf-dom: x  dom(f) in-eclass: e  X bnot: b btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) infix_ap: x f y set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' bimplies: p  q band: p  q bor: p q so_lambda: x.t[x] rec: rec(x.A[x]) quotient: x,y:A//B[x; y] tunion: x:A.B[x] type-monotone: Monotone(T.F[T]) name: Name Id: Id norm-pair: norm-pair(Na;Nb) norm-list: norm-list(N) norm-union: norm-union(Na;Nb) norm-base-deriv: norm-base-deriv() norm-combinator-def: norm-combinator-def() id-fun: id-fun(T) esharp-rule: E#Rule norm-esharp-rule: norm-esharp-rule() esharp-program: E#Program sq-id-fun: sq-id-fun(T) norm-esharp-program: norm-esharp-program() universe: Type limited-type: LimitedType subtype_rel: A r B combinator-def: CombinatorDef value-type: value-type(T) classderiv: ClassDerivation base-deriv: BaseDef expression: Expression atom: Atom$n atom: Atom cdv-wf: WF(dv) cdv-types: cdv-types(dv) esharp-env: E#Env
Lemmas :  norm-pair_wf norm-union_wf norm-combinator-def_wf atom-value-type combinator-def_wf classderiv_wf cdv-wf_wf cdv-types_wf expression_wf esharp-program_wf id-fun_wf norm-esharp-rule_wf esharp-rule_wf norm-list_wf norm-base-deriv_wf Id_wf name_wf type-monotone_wf subtype_rel_sum subtype_rel_product subtype_rel_simple_product base-deriv_wf value-type_wf function-value-type union-value-type bunion-value-type tunion-value-type set-value-type quotient-value-type rec-value-type equal-value-type type-value-type list-value-type product-value-type it_wf unit_wf ifthenelse_wf eqtt_to_assert iff_transitivity eqff_to_assert assert_of_bnot bnot_wf not_wf assert_wf nat_properties select_wf int_seg_properties int_seg_wf length_wf_nat bfalse_wf top_wf bool_wf length_wf1 nat_wf subtype_rel_wf intensional-universe_wf member_wf limited-type_wf

norm-esharp-program()  \mmember{}  id-fun(E\#Program)


Date html generated: 2011_08_17-PM-04_38_31
Last ObjectModification: 2010_09_21-PM-02_02_24

Home Index