{ [A:']
    B:{B:'| valueall-type(B)} . F:bag(A)  bag(B).
      [X:EClass(A)]
        NormalLProgrammable'(A;X)  NormalLProgrammable'(B;a.F[a]|X|) 
        supposing F[{}] = {} }

{ Proof }



Definitions occuring in Statement :  Message: Message normal-locally-programmable: NormalLProgrammable(A;X) simple-comb1: x.F[x]|X| eclass: EClass(A[eo; e]) uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies: P  Q set: {x:A| B[x]}  function: x:A  B[x] universe: Type equal: s = t empty-bag: {} bag: bag(T) valueall-type: valueall-type(T)
Lemmas :  length_wf1 int_subtype_base subtype_base_sq decidable__equal_int select_wf int_seg_wf nat_wf false_wf not_wf le_wf Message-inhabited subtype_rel_wf squash_wf simple-comb-locally-programmable1 event-ordering+_inc event-ordering+_wf es-E_wf sq_stable_from_decidable sq_stable__uall sq_stable__all uall_wf member_wf eclass_wf2 eclass_wf3 empty-bag_wf eclass_wf bag_wf normal-locally-programmable_wf simple-comb1_wf local-program-at_wf Message_wf dataflow-program_wf Id_wf valueall-type_wf

\mforall{}[A:\mBbbU{}']
    \mforall{}B:\{B:\mBbbU{}'|  valueall-type(B)\}  .  \mforall{}F:bag(A)  {}\mrightarrow{}  bag(B).
        \mforall{}[X:EClass(A)]
            NormalLProgrammable'(A;X)  {}\mRightarrow{}  NormalLProgrammable'(B;\mlambda{}a.F[a]|X|)  supposing  F[\{\}]  =  \{\}


Date html generated: 2011_08_17-PM-04_07_54
Last ObjectModification: 2011_06_29-PM-06_17_13

Home Index