{ 
[A:
']
    
B:{B:
'| valueall-type(B)} . 
F:bag(A) 
 bag(B).
      
[X:EClass(A)]
        NormalLProgrammable'(A;X) 
 NormalLProgrammable'(B;
a.F[a]|X|) 
        supposing F[{}] = {} }
{ Proof }
Definitions occuring in Statement : 
Message: Message, 
normal-locally-programmable: NormalLProgrammable(A;X), 
simple-comb1:
x.F[x]|X|, 
eclass: EClass(A[eo; e]), 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
so_apply: x[s], 
all:
x:A. B[x], 
implies: P 
 Q, 
set: {x:A| B[x]} , 
function: x:A 
 B[x], 
universe: Type, 
equal: s = t, 
empty-bag: {}, 
bag: bag(T), 
valueall-type: valueall-type(T)
Lemmas : 
length_wf1, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
select_wf, 
int_seg_wf, 
nat_wf, 
false_wf, 
not_wf, 
le_wf, 
Message-inhabited, 
subtype_rel_wf, 
squash_wf, 
simple-comb-locally-programmable1, 
event-ordering+_inc, 
event-ordering+_wf, 
es-E_wf, 
sq_stable_from_decidable, 
sq_stable__uall, 
sq_stable__all, 
uall_wf, 
member_wf, 
eclass_wf2, 
eclass_wf3, 
empty-bag_wf, 
eclass_wf, 
bag_wf, 
normal-locally-programmable_wf, 
simple-comb1_wf, 
local-program-at_wf, 
Message_wf, 
dataflow-program_wf, 
Id_wf, 
valueall-type_wf
\mforall{}[A:\mBbbU{}']
    \mforall{}B:\{B:\mBbbU{}'|  valueall-type(B)\}  .  \mforall{}F:bag(A)  {}\mrightarrow{}  bag(B).
        \mforall{}[X:EClass(A)]
            NormalLProgrammable'(A;X)  {}\mRightarrow{}  NormalLProgrammable'(B;\mlambda{}a.F[a]|X|)  supposing  F[\{\}]  =  \{\}
Date html generated:
2011_08_17-PM-04_07_54
Last ObjectModification:
2011_06_29-PM-06_17_13
Home
Index