{ [Info:{Info:Type| Info} ]
    B:{B:Type| valueall-type(B)} . n:.
      [A:n  Type]. [Xs:k:n  EClass(A k)].
        ((k:n. NormalLProgrammable(A k;Xs k))
         (F:k:n  bag(A k)  bag(B)
              NormalLProgrammable(B;simple-comb(F;Xs)) 
              supposing (F (i.{})) = {})) }

{ Proof }



Definitions occuring in Statement :  normal-locally-programmable: NormalLProgrammable(A;X) simple-comb: simple-comb(F;Xs) eclass: EClass(A[eo; e]) int_seg: {i..j} nat: uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] squash: T implies: P  Q set: {x:A| B[x]}  apply: f a lambda: x.A[x] function: x:A  B[x] natural_number: $n universe: Type equal: s = t empty-bag: {} bag: bag(T) valueall-type: valueall-type(T)
Definitions :  prop: universe: Type set: {x:A| B[x]}  squash: T implies: P  Q false: False not: A le: A  B int: nat: function: x:A  B[x] all: x:A. B[x] equal: s = t Id: Id true: True member: t  T uall: [x:A]. B[x] isect: x:A. B[x] subtype_rel: A r B uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a less_than: a < b ge: i  j  strong-subtype: strong-subtype(A;B) valueall-type: valueall-type(T) atom: Atom$n sq_exists: x:{A| B[x]} local-program-at: local-program-at{i:l}(Info;A;X;dfp;x) int_seg: {i..j} natural_number: $n apply: f a dataflow-program: DataflowProgram(A) bool: bag: bag(T) lambda: x.A[x] empty-bag: {} eclass: EClass(A[eo; e]) es-loc: loc(e) es-E: E event-ordering+: EO+(Info) es-le-before: loc(e) es-info: info(e) map: map(f;as) upto: upto(n) parallel-df-program-case1: parallel-df-program-case1(B;F;dfps) df-program-meaning: df-program-meaning(dfp) data-stream: data-stream(P;L) last: last(L) simple-comb: simple-comb(F;Xs) event_ordering: EO record+: record+ dep-isect: Error :dep-isect,  assert: b ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] eq_atom: eq_atom$n(x;y) eq_atom: x =a y record-select: r.x fpf: a:A fp-B[a] pair: <a, b> df-program-type: df-program-type(dfp) limited-type: LimitedType subtype: S  T
Lemmas :  bool_subtype_base subtype_base_sq non_null_iff_length es-le-before_wf2 es-le_wf es-le-before-not-null assert_wf equal-nil-sq-nil pos-length es-base-E_wf pos_length2 es-info_wf es-le-before_wf last-stream-parallel-df-program-case1-meaning df-program-meaning_wf data-stream_wf last_wf int-valueall-type set-valueall-type list-valueall-type Id-has-valueall bfalse_wf btrue_wf real-has-value int_inc_real rational-has-value rationals_wf ifthenelse_wf bool_wf tunion_wf int_nzero_wf b-union_wf int-rational subtype_rel-equal select-upto intensional-universe_wf unit_wf subtype_rel_bag select-map length_upto subtype_rel_sets subtype_rel_set top_wf length-map-sq nat_properties length-map int_seg_properties length_wf_nat true_wf subtype_rel_dep_function subtype_rel_self subtype_rel_function length_wf1 subtype_rel_wf false_wf not_wf le_wf member_wf df-program-type_wf select_wf parallel-df-program-case1_wf map_wf upto_wf es-loc_wf sq_stable_from_decidable sq_stable__all simple-comb_wf empty-bag_wf bag_wf normal-locally-programmable_wf eclass_wf es-E_wf event-ordering+_inc event-ordering+_wf nat_wf valueall-type_wf squash_wf int_seg_wf local-program-at_wf dataflow-program_wf Id_wf

\mforall{}[Info:\{Info:Type|  \mdownarrow{}Info\}  ]
    \mforall{}B:\{B:Type|  valueall-type(B)\}  .  \mforall{}n:\mBbbN{}.
        \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[Xs:k:\mBbbN{}n  {}\mrightarrow{}  EClass(A  k)].
            ((\mforall{}k:\mBbbN{}n.  NormalLProgrammable(A  k;Xs  k))
            {}\mRightarrow{}  (\mforall{}F:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)  {}\mrightarrow{}  bag(B)
                        NormalLProgrammable(B;simple-comb(F;Xs))  supposing  (F  (\mlambda{}i.\{\}))  =  \{\}))


Date html generated: 2011_08_16-PM-06_16_26
Last ObjectModification: 2011_06_29-PM-09_24_44

Home Index