{ [st1,st2:SimpleType].  (st-similar(st1;st2)  st-similar(st2;st1)) }

{ Proof }



Definitions occuring in Statement :  st-similar: st-similar(st1;st2) simple_type: SimpleType assert: b uall: [x:A]. B[x] iff: P  Q
Definitions :  st_class: st_class(kind) st_list: st_list(kind) st_union: st_union(left;right) st_prod: st_prod(fst;snd) eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) st_arrow: st_arrow(domain;range) st_const: st_const(ty) limited-type: LimitedType st_class-kind: st_class-kind(x) st_class?: st_class?(x) simple_type_ind_st_class: simple_type_ind_st_class_compseq_tag_def st_list-kind: st_list-kind(x) st_list?: st_list?(x) simple_type_ind_st_list: simple_type_ind_st_list_compseq_tag_def st_union-right: st_union-right(x) st_union-left: st_union-left(x) st_union?: st_union?(x) simple_type_ind_st_union: simple_type_ind_st_union_compseq_tag_def st_prod-snd: st_prod-snd(x) st_prod-fst: st_prod-fst(x) st_prod?: st_prod?(x) simple_type_ind_st_prod: simple_type_ind_st_prod_compseq_tag_def st_arrow-range: st_arrow-range(x) st_arrow-domain: st_arrow-domain(x) st_arrow?: st_arrow?(x) simple_type_ind_st_arrow: simple_type_ind_st_arrow_compseq_tag_def st_const?: st_const?(x) simple_type_ind_st_const: simple_type_ind_st_const_compseq_tag_def null: null(as) set_blt: a < b grp_blt: a < b apply: f a infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bnot: b bimplies: p  q band: p  q bor: p q guard: {T} sq_type: SQType(T) btrue: tt bool: strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a uiff: uiff(P;Q) subtype_rel: A r B st_var-name: st_var-name(x) st_var?: st_var?(x) eq_atom: x =a y eq_atom: eq_atom$n(x;y) simple_type_ind_st_var: simple_type_ind_st_var_compseq_tag_def simple_type_ind: simple_type_ind st_var: st_var(name) set: {x:A| B[x]}  atom: Atom union: left + right rec: rec(x.A[x]) universe: Type prop: all: x:A. B[x] st-similar: st-similar(st1;st2) ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] true: True false: False void: Void simple_type: SimpleType iff: P  Q and: P  Q product: x:A  B[x] pair: <a, b> lambda: x.A[x] assert: b uall: [x:A]. B[x] isect: x:A. B[x] implies: P  Q function: x:A  B[x] member: t  T equal: s = t rev_implies: P  Q Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  Try: Error :Try,  Complete: Error :Complete,  RepUR: Error :RepUR,  CollapseTHENA: Error :CollapseTHENA
Lemmas :  eqtt_to_assert eq_atom_wf assert_elim bool_wf assert_of_eq_atom bool_subtype_base subtype_base_sq true_wf ifthenelse_wf false_wf assert_wf simple_type_wf iff_wf st-similar_wf assert_witness iff_functionality_wrt_iff iff_weakening_uiff band_wf assert_of_band

\mforall{}[st1,st2:SimpleType].    (\muparrow{}st-similar(st1;st2)  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}st-similar(st2;st1))


Date html generated: 2011_08_17-PM-04_55_50
Last ObjectModification: 2011_02_07-PM-09_12_45

Home Index