{ [ste:st_exp{i:l}()]. [rho:Atom  Type]. [nu:Atom  SimpleType].
  [sigma1,sigma2:x:Atom  st-meaning-aux(nu x; rho)].
    (ste-val(ste) sigma1) = (ste-val(ste) sigma2) 
    supposing (xste-freevars(ste).(sigma1 x) = (sigma2 x)) }

{ Proof }



Definitions occuring in Statement :  ste-val: ste-val(ste) ste-type: ste-type(ste) ste-freevars: ste-freevars(ste) st_exp: st_exp{i:l}() simple_type: SimpleType uimplies: b supposing a uall: [x:A]. B[x] apply: f a function: x:A  B[x] atom: Atom universe: Type equal: s = t l_all: (xL.P[x])
Definitions :  st_var?: Error :st_var?,  st_const?: Error :st_const?,  st_arrow?: Error :st_arrow?,  st_arrow-domain: Error :st_arrow-domain,  simple_type_ind_st_arrow: Error :simple_type_ind_st_arrow_compseq_tag_def,  st_arrow-range: Error :st_arrow-range,  ifthenelse: if b then t else f fi  st_arrow: Error :st_arrow,  list-diff: list-diff(eq;as;bs) st_exp_ind_ste_lambda: st_exp_ind_ste_lambda_compseq_tag_def st-ap: st-ap(st1;st2) atom-deq: AtomDeq l-union: as  bs eq_atom: x =a y eq_atom: eq_atom$n(x;y) st_exp_ind_ste_ap: st_exp_ind_ste_ap_compseq_tag_def pi2: snd(t) pi1: fst(t) st_exp_ind_ste_const: st_exp_ind_ste_const_compseq_tag_def rev_implies: P  Q or: P  Q iff: P  Q es-causle: e c e' nat: cand: A c B exists: x:A. B[x] implies: P  Q list: type List nil: [] cons: [car / cdr] eclass: EClass(A[eo; e]) pair: <a, b> fpf: a:A fp-B[a] tl: tl(l) hd: hd(l) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) subtype_rel: A r B st_exp_ind: st_exp_ind st_exp_ind_ste_var: st_exp_ind_ste_var_compseq_tag_def product: x:A  B[x] st-constant: st-constant{i:l}(Info) union: left + right rec: rec(x.A[x]) limited-type: LimitedType ste-freevars: ste-freevars(ste) l_member: (x  l) set: {x:A| B[x]}  lambda: x.A[x] all: x:A. B[x] axiom: Ax ste-val: ste-val(ste) prop: member: t  T simple_type: Error :simple_type,  function: x:A  B[x] universe: Type atom: Atom st_exp: st_exp{i:l}() uall: [x:A]. B[x] uimplies: b supposing a isect: x:A. B[x] st-meaning-aux: st-meaning-aux{i:l}(Info;st;rho) apply: f a ste-type: ste-type(ste) l_all: (xL.P[x]) so_lambda: x.t[x] equal: s = t Try: Error :Try,  Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  Unfolds: Error :Unfolds,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  tactic: Error :tactic,  st-meaning: [[st]] RepUR: Error :RepUR,  eq_st: eq_st(st1;st2) fpf-dom: x  dom(f) void: Void simple_type_ind_st_const: Error :simple_type_ind_st_const_compseq_tag_def,  st_const-ty: Error :st_const-ty,  top: Top st_const: Error :st_const,  false: False bfalse: ff btrue: tt decide: case b of inl(x) =s[x] | inr(y) =t[y] eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q assert: b bnot: b int: bool: unit: Unit MaAuto: Error :MaAuto,  guard: {T} deq: EqDecider(T) ParallelOp: Error :ParallelOp,  RepeatFor: Error :RepeatFor,  ORELSE: Error :ORELSE,  AllHyps: Error :AllHyps,  simple_type_ind: Error :simple_type_ind,  true: True it: st_var: Error :st_var,  simple_type_ind_st_var: Error :simple_type_ind_st_var_compseq_tag_def,  sqequal: s ~ t AssertBY: Error :AssertBY,  sq_type: SQType(T) ycomb: Y
Lemmas :  member-list-diff not_functionality_wrt_iff member_singleton not_functionality_wrt_uiff assert_of_eq_atom eq_atom_wf subtype_base_sq assert-eq_st true_wf false_wf Error :st_var_wf,  member-union ifthenelse_wf Error :st_const_wf,  top_wf bool_wf Error :st_arrow?_wf,  assert_wf not_wf bnot_wf assert_of_bnot eqff_to_assert uiff_transitivity eqtt_to_assert Error :st_arrow-domain_wf,  eq_st_wf Error :st_arrow-range_wf,  equal-top l_member_wf cons_member nat_wf Error :simple_type_wf,  st-meaning-aux_wf l_all_wf2 l_all_wf st_exp_wf ste-freevars_wf uall_wf ste-type_wf member_wf st-ap_wf l-union_wf atom-deq_wf Error :st_arrow_wf,  list-diff_wf

\mforall{}[ste:st\_exp\{i:l\}()].  \mforall{}[rho:Atom  {}\mrightarrow{}  Type].  \mforall{}[nu:Atom  {}\mrightarrow{}  SimpleType].
\mforall{}[sigma1,sigma2:x:Atom  {}\mrightarrow{}  st-meaning-aux(nu  x;  rho)].
    (ste-val(ste)  sigma1)  =  (ste-val(ste)  sigma2) 
    supposing  (\mforall{}x\mmember{}ste-freevars(ste).(sigma1  x)  =  (sigma2  x))


Date html generated: 2011_08_17-PM-05_10_38
Last ObjectModification: 2011_02_05-AM-00_02_07

Home Index