Nuprl Lemma : decidable-equality-implies-Leibniz-type

T:Type. ((∀x,y:T.  Dec(x y ∈ T))  Leibniz-type{i:l}(T))


Proof




Definitions occuring in Statement :  Leibniz-type: Leibniz-type{i:l}(T) decidable: Dec(P) all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q Leibniz-type: Leibniz-type{i:l}(T) exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B decidable: Dec(P) or: P ∨ Q not: ¬A false: False iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B prop:
Lemmas referenced :  not_wf equal_wf istype-void subtype_rel_self decidable_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt dependent_pairFormation_alt lambdaEquality_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType universeIsType sqequalRule dependent_functionElimination unionElimination inrFormation_alt independent_functionElimination equalitySymmetry equalityTransitivity voidElimination equalityIstype functionIsType inlFormation_alt because_Cache independent_pairFormation productIsType applyEquality instantiate unionIsType universeEquality

Latex:
\mforall{}T:Type.  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  Leibniz-type\{i:l\}(T))



Date html generated: 2019_10_31-AM-07_25_49
Last ObjectModification: 2019_09_19-PM-04_39_28

Theory : constructive!algebra


Home Index