Nuprl Lemma : decidable-equality-implies-Leibniz-type
∀T:Type. ((∀x,y:T.  Dec(x = y ∈ T)) 
⇒ Leibniz-type{i:l}(T))
Proof
Definitions occuring in Statement : 
Leibniz-type: Leibniz-type{i:l}(T)
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
Leibniz-type: Leibniz-type{i:l}(T)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
not_wf, 
equal_wf, 
istype-void, 
subtype_rel_self, 
decidable_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
universeIsType, 
sqequalRule, 
dependent_functionElimination, 
unionElimination, 
inrFormation_alt, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
voidElimination, 
equalityIstype, 
functionIsType, 
inlFormation_alt, 
because_Cache, 
independent_pairFormation, 
productIsType, 
applyEquality, 
instantiate, 
unionIsType, 
universeEquality
Latex:
\mforall{}T:Type.  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  Leibniz-type\{i:l\}(T))
Date html generated:
2019_10_31-AM-07_25_49
Last ObjectModification:
2019_09_19-PM-04_39_28
Theory : constructive!algebra
Home
Index