Nuprl Lemma : Regularcoset-regularset
∀A:coSet{i:l}. (cRegular(A) ⇒ regular(A))
Proof
Definitions occuring in Statement : 
Regularcoset: cRegular(A), 
regularset: regular(A), 
coSet: coSet{i:l}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
uimplies: b supposing a, 
so_apply: x[s], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cand: A c∧ B, 
and: P ∧ Q, 
regularset: regular(A), 
Regularcoset: cRegular(A), 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
Regularcoset_wf, 
set_wf, 
setmem_wf, 
mv-map_wf, 
coset-relation-setrel, 
coSet_wf, 
subtype_rel_dep_function, 
setrel_wf
Rules used in proof : 
rename, 
setElimination, 
setEquality, 
independent_isectElimination, 
because_Cache, 
universeEquality, 
functionEquality, 
lambdaEquality, 
sqequalRule, 
cumulativity, 
instantiate, 
applyEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
independent_functionElimination, 
hypothesisEquality, 
dependent_functionElimination, 
independent_pairFormation, 
hypothesis, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}A:coSet\{i:l\}.  (cRegular(A)  {}\mRightarrow{}  regular(A))
 Date html generated: 
2018_07_29-AM-10_06_57
 Last ObjectModification: 
2018_07_20-PM-03_25_55
Theory : constructive!set!theory
Home
Index