Nuprl Lemma : Regularcoset-regularset

A:coSet{i:l}. (cRegular(A)  regular(A))


Proof




Definitions occuring in Statement :  Regularcoset: cRegular(A) regularset: regular(A) coSet: coSet{i:l} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a so_apply: x[s] prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T cand: c∧ B and: P ∧ Q regularset: regular(A) Regularcoset: cRegular(A) implies:  Q all: x:A. B[x]
Lemmas referenced :  Regularcoset_wf set_wf setmem_wf mv-map_wf coset-relation-setrel coSet_wf subtype_rel_dep_function setrel_wf
Rules used in proof :  rename setElimination setEquality independent_isectElimination because_Cache universeEquality functionEquality lambdaEquality sqequalRule cumulativity instantiate applyEquality isectElimination extract_by_obid introduction independent_functionElimination hypothesisEquality dependent_functionElimination independent_pairFormation hypothesis cut thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}A:coSet\{i:l\}.  (cRegular(A)  {}\mRightarrow{}  regular(A))



Date html generated: 2018_07_29-AM-10_06_57
Last ObjectModification: 2018_07_20-PM-03_25_55

Theory : constructive!set!theory


Home Index