Nuprl Lemma : Regularcoset_wf

[A:coSet{i:l}]. (cRegular(A) ∈ ℙ{i''})


Proof




Definitions occuring in Statement :  Regularcoset: cRegular(A) coSet: coSet{i:l} uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  exists: x:A. B[x] all: x:A. B[x] uimplies: supposing a so_apply: x[s] subtype_rel: A ⊆B implies:  Q so_lambda: λ2x.t[x] and: P ∧ Q prop: Regularcoset: cRegular(A) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  onto-map_wf exists_wf set_wf subtype_rel_self subtype_rel_dep_function mv-map_wf coset-relation_wf setmem_wf coSet_wf all_wf transitive-set_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality lambdaFormation rename setElimination independent_isectElimination setEquality because_Cache applyEquality universeEquality functionEquality lambdaEquality instantiate hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cumulativity productEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:coSet\{i:l\}].  (cRegular(A)  \mmember{}  \mBbbP{}\{i''\})



Date html generated: 2018_07_29-AM-10_06_50
Last ObjectModification: 2018_07_20-PM-01_36_24

Theory : constructive!set!theory


Home Index