Nuprl Lemma : comem-graph-cosets

[I:Type]. ∀[E:I ⟶ I ⟶ ℙ].
  ∀i:I. ∀x:coSet{i:l}.
    (comem{i:l}(x;graph-cosets(I;i,j.E[i;j]) i) ⇐⇒ ∃j:I. (E[i;j] ∧ (x (graph-cosets(I;i,j.E[i;j]) j) ∈ coSet{i:l})))


Proof




Definitions occuring in Statement :  graph-cosets: graph-cosets(I;i,j.E[i; j]) comem: comem{i:l}(x;s) coSet: coSet{i:l} uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  rev_implies:  Q so_apply: x[s] so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s1;s2] prop: member: t ∈ T exists: x:A. B[x] implies:  Q and: P ∧ Q iff: ⇐⇒ Q pi2: snd(t) pi1: fst(t) set-dom: set-dom(s) set-item: set-item(s;x) comem: comem{i:l}(x;s) graph-cosets: graph-cosets(I;i,j.E[i; j]) all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  and_wf pi1_wf graph-cosets_wf coSet_wf equal_wf subtype_rel_self exists_wf
Rules used in proof :  setElimination applyLambdaEquality equalitySymmetry equalityTransitivity dependent_set_memberEquality dependent_pairEquality rename dependent_pairFormation universeEquality functionEquality lambdaEquality because_Cache hypothesis applyEquality hypothesisEquality productEquality cumulativity isectElimination extract_by_obid introduction instantiate cut thin productElimination sqequalHypSubstitution independent_pairFormation sqequalRule lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[I:Type].  \mforall{}[E:I  {}\mrightarrow{}  I  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}i:I.  \mforall{}x:coSet\{i:l\}.
        (comem\{i:l\}(x;graph-cosets(I;i,j.E[i;j])  i)
        \mLeftarrow{}{}\mRightarrow{}  \mexists{}j:I.  (E[i;j]  \mwedge{}  (x  =  (graph-cosets(I;i,j.E[i;j])  j))))



Date html generated: 2018_07_29-AM-09_50_21
Last ObjectModification: 2018_07_11-PM-10_45_58

Theory : constructive!set!theory


Home Index