Nuprl Lemma : comem-graph-cosets
∀[I:Type]. ∀[E:I ⟶ I ⟶ ℙ].
  ∀i:I. ∀x:coSet{i:l}.
    (comem{i:l}(x;graph-cosets(I;i,j.E[i;j]) i) 
⇐⇒ ∃j:I. (E[i;j] ∧ (x = (graph-cosets(I;i,j.E[i;j]) j) ∈ coSet{i:l})))
Proof
Definitions occuring in Statement : 
graph-cosets: graph-cosets(I;i,j.E[i; j])
, 
comem: comem{i:l}(x;s)
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
set-dom: set-dom(s)
, 
set-item: set-item(s;x)
, 
comem: comem{i:l}(x;s)
, 
graph-cosets: graph-cosets(I;i,j.E[i; j])
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
and_wf, 
pi1_wf, 
graph-cosets_wf, 
coSet_wf, 
equal_wf, 
subtype_rel_self, 
exists_wf
Rules used in proof : 
setElimination, 
applyLambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
dependent_set_memberEquality, 
dependent_pairEquality, 
rename, 
dependent_pairFormation, 
universeEquality, 
functionEquality, 
lambdaEquality, 
because_Cache, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
productEquality, 
cumulativity, 
isectElimination, 
extract_by_obid, 
introduction, 
instantiate, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
independent_pairFormation, 
sqequalRule, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[I:Type].  \mforall{}[E:I  {}\mrightarrow{}  I  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}i:I.  \mforall{}x:coSet\{i:l\}.
        (comem\{i:l\}(x;graph-cosets(I;i,j.E[i;j])  i)
        \mLeftarrow{}{}\mRightarrow{}  \mexists{}j:I.  (E[i;j]  \mwedge{}  (x  =  (graph-cosets(I;i,j.E[i;j])  j))))
Date html generated:
2018_07_29-AM-09_50_21
Last ObjectModification:
2018_07_11-PM-10_45_58
Theory : constructive!set!theory
Home
Index