Nuprl Lemma : set-image_wf2

[b:coSet{i:l}]. ∀[f:(x:coSet{i:l} × (x ∈ b)) ⟶ Set{i:l}].  (set-image(f;b) ∈ Set{i:l})


Proof




Definitions occuring in Statement :  set-image: set-image(f;b) Set: Set{i:l} setmem: (x ∈ s) coSet: coSet{i:l} uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x]
Definitions unfolded in proof :  so_apply: x[s] prop: mk-coset: mk-coset(T;f) Wsup: Wsup(a;b) mk-set: f"(T) so_lambda: λ2x.t[x] subtype_rel: A ⊆B mkset: {f[t] t ∈ T} set-image: set-image(f;b) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  Set_wf coSet_wf mk-coset_wf setmem_wf subtype_rel_self mem-mk-set_wf2 mkset_wf coSet_subtype subtype_coSet
Rules used in proof :  because_Cache isect_memberEquality cumulativity productEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality dependent_pairEquality lambdaEquality isectElimination thin productElimination sqequalHypSubstitution applyEquality hypothesisEquality hypothesis extract_by_obid hypothesis_subsumption sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[b:coSet\{i:l\}].  \mforall{}[f:(x:coSet\{i:l\}  \mtimes{}  (x  \mmember{}  b))  {}\mrightarrow{}  Set\{i:l\}].    (set-image(f;b)  \mmember{}  Set\{i:l\})



Date html generated: 2018_07_29-AM-10_08_49
Last ObjectModification: 2018_07_18-PM-00_36_16

Theory : constructive!set!theory


Home Index