Nuprl Lemma : set-predicate-iff
∀[s:Set{i:l}]. ∀[P:{x:Set{i:l}| (x ∈ s)}  ⟶ ℙ'].
  (set-predicate{i:l}(s;x.P[x]) ⇐⇒ ∀a1,a2:Set{i:l}.  ((a1 ∈ s) ⇒ (a2 ∈ s) ⇒ seteq(a1;a2) ⇒ P[a1] ⇒ P[a2]))
Proof
Definitions occuring in Statement : 
set-predicate: set-predicate{i:l}(s;a.P[a]), 
Set: Set{i:l}, 
setmem: (x ∈ s), 
seteq: seteq(s1;s2), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
guard: {T}, 
exists: ∃x:A. B[x], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
set-predicate: set-predicate{i:l}(s;a.P[a]), 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coSet_wf, 
coSet-mem-Set-implies-Set, 
set-subtype-coSet, 
seteq_wf, 
all_wf, 
setmem_wf, 
Set_wf, 
set-predicate_wf2
Rules used in proof : 
independent_functionElimination, 
dependent_pairFormation, 
independent_isectElimination, 
dependent_functionElimination, 
universeEquality, 
dependent_set_memberEquality, 
functionEquality, 
instantiate, 
because_Cache, 
cumulativity, 
hypothesis, 
setEquality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
independent_pairFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[s:Set\{i:l\}].  \mforall{}[P:\{x:Set\{i:l\}|  (x  \mmember{}  s)\}    {}\mrightarrow{}  \mBbbP{}'].
    (set-predicate\{i:l\}(s;x.P[x])
    \mLeftarrow{}{}\mRightarrow{}  \mforall{}a1,a2:Set\{i:l\}.    ((a1  \mmember{}  s)  {}\mRightarrow{}  (a2  \mmember{}  s)  {}\mRightarrow{}  seteq(a1;a2)  {}\mRightarrow{}  P[a1]  {}\mRightarrow{}  P[a2]))
Date html generated:
2018_07_29-AM-09_52_12
Last ObjectModification:
2018_07_18-AM-10_10_43
Theory : constructive!set!theory
Home
Index