Nuprl Lemma : set-predicate_wf2
∀[s:Set{i:l}]. ∀[P:{x:Set{i:l}| (x ∈ s)}  ⟶ ℙ'].  (set-predicate{i:l}(s;x.P[x]) ∈ ℙ')
Proof
Definitions occuring in Statement : 
set-predicate: set-predicate{i:l}(s;a.P[a])
, 
Set: Set{i:l}
, 
setmem: (x ∈ s)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
set-predicate: set-predicate{i:l}(s;a.P[a])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
set-subtype-coSet, 
Set_wf, 
coSet-mem-Set-implies-Set, 
seteq_wf, 
setmem_wf, 
coSet_wf, 
all_wf
Rules used in proof : 
isect_memberEquality, 
universeEquality, 
setEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
dependent_pairFormation, 
independent_isectElimination, 
dependent_set_memberEquality, 
because_Cache, 
applyEquality, 
hypothesisEquality, 
cumulativity, 
functionEquality, 
lambdaEquality, 
hypothesis, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[s:Set\{i:l\}].  \mforall{}[P:\{x:Set\{i:l\}|  (x  \mmember{}  s)\}    {}\mrightarrow{}  \mBbbP{}'].    (set-predicate\{i:l\}(s;x.P[x])  \mmember{}  \mBbbP{}')
Date html generated:
2018_07_29-AM-09_52_10
Last ObjectModification:
2018_07_18-AM-10_07_49
Theory : constructive!set!theory
Home
Index