Nuprl Lemma : set-relation-on-setrel
∀R,A:Set{i:l}.  SetRelationOn(A;setrel(R))
Proof
Definitions occuring in Statement : 
setrel: setrel(R)
, 
set-relation-on: SetRelationOn(A;R)
, 
Set: Set{i:l}
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
setrel: setrel(R)
, 
set-relation-on: SetRelationOn(A;R)
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
setmem_functionality_1, 
set-subtype-coSet, 
orderedpairset_wf, 
subtype_rel_set, 
Set_wf, 
coSet_wf, 
setmem_wf, 
orderedpairset_functionality, 
seteq_weakening, 
seteq_inversion, 
seteq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
isectElimination, 
instantiate, 
lambdaEquality_alt, 
cumulativity, 
because_Cache, 
inhabitedIsType, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
universeIsType, 
setIsType
Latex:
\mforall{}R,A:Set\{i:l\}.    SetRelationOn(A;setrel(R))
Date html generated:
2020_05_20-PM-01_19_17
Last ObjectModification:
2020_01_06-PM-01_23_33
Theory : constructive!set!theory
Home
Index