Nuprl Lemma : setTC-unique
∀a,s:Set{i:l}.
  ((a ⊆ s) 
⇒ transitive-set(s) 
⇒ (∀s':Set{i:l}. ((a ⊆ s') 
⇒ transitive-set(s') 
⇒ (s ⊆ s'))) 
⇒ seteq(s;setTC(a)))
Proof
Definitions occuring in Statement : 
transitive-set: transitive-set(s)
, 
setsubset: (a ⊆ b)
, 
setTC: setTC(a)
, 
seteq: seteq(s1;s2)
, 
Set: Set{i:l}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
seteq-iff-setsubset, 
setTC_wf, 
setTC-contains, 
setTC-transitive, 
setTC-least, 
all_wf, 
Set_wf, 
setsubset_wf, 
transitive-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
because_Cache, 
instantiate, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
functionEquality
Latex:
\mforall{}a,s:Set\{i:l\}.
    ((a  \msubseteq{}  s)
    {}\mRightarrow{}  transitive-set(s)
    {}\mRightarrow{}  (\mforall{}s':Set\{i:l\}.  ((a  \msubseteq{}  s')  {}\mRightarrow{}  transitive-set(s')  {}\mRightarrow{}  (s  \msubseteq{}  s')))
    {}\mRightarrow{}  seteq(s;setTC(a)))
Date html generated:
2018_05_22-PM-09_51_39
Last ObjectModification:
2018_05_22-AM-11_25_11
Theory : constructive!set!theory
Home
Index