Nuprl Lemma : sigmaset_wf2

[A:Set{i:l}]. ∀[B:{a:Set{i:l}| (a ∈ A)}  ⟶ Set{i:l}].  a:A.B[a] ∈ Set{i:l})


Proof




Definitions occuring in Statement :  sigmaset: Σa:A.B[a] Set: Set{i:l} setmem: (x ∈ s) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  so_lambda: λ2x.t[x] all: x:A. B[x] prop: so_apply: x[s] mkset: {f[t] t ∈ T} sigmaset: Σa:A.B[a] Wsup: Wsup(a;b) mk-set: f"(T) subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  set-item_wf2 orderedpairset_wf2 setmem-mk-set mk-set_wf set-subtype-coSet setmem_wf Set_wf set-dom_wf mkset_wf set-subtype subtype-set
Rules used in proof :  isect_memberEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality dependent_set_memberEquality dependent_functionElimination universeEquality lambdaEquality because_Cache setEquality functionExtensionality cumulativity productEquality isectElimination rename thin productElimination sqequalRule sqequalHypSubstitution applyEquality hypothesisEquality hypothesis extract_by_obid hypothesis_subsumption cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:Set\{i:l\}].  \mforall{}[B:\{a:Set\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  Set\{i:l\}].    (\mSigma{}a:A.B[a]  \mmember{}  Set\{i:l\})



Date html generated: 2018_07_29-AM-10_04_12
Last ObjectModification: 2018_07_18-PM-03_45_25

Theory : constructive!set!theory


Home Index