Nuprl Lemma : csm-comp-assoc

[A,B,C,D:CubicalSet]. ∀[F:A ⟶ B]. ∀[G:B ⟶ C]. ∀[H:C ⟶ D].  (H F ∈ A ⟶ D)


Proof




Definitions occuring in Statement :  csm-comp: F cube-set-map: A ⟶ B cubical-set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T csm-comp: F cube-set-map: A ⟶ B ext-eq: A ≡ B and: P ∧ Q squash: T subtype_rel: A ⊆B all: x:A. B[x] true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cubical-set-is-functor equal_wf nat-trans_wf name-cat_wf type-cat_wf trans-comp-assoc trans-comp_wf iff_weakening_equal cube-set-map_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution productElimination thin applyEquality instantiate lambdaEquality imageElimination isectElimination because_Cache hypothesis hypothesisEquality sqequalRule dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_isectElimination independent_functionElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[A,B,C,D:CubicalSet].  \mforall{}[F:A  {}\mrightarrow{}  B].  \mforall{}[G:B  {}\mrightarrow{}  C].  \mforall{}[H:C  {}\mrightarrow{}  D].    (H  o  G  o  F  =  H  o  G  o  F)



Date html generated: 2017_10_05-AM-10_11_16
Last ObjectModification: 2017_07_28-AM-11_17_50

Theory : cubical!sets


Home Index