Nuprl Lemma : csm-cubical-pi

X,Delta:CubicalSet. ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}. ∀s:Delta ⟶ X.  ((ΠB)s Delta ⊢ Π(A)s (B)(s p;q) ∈ {Delta ⊢ _})


Proof




Definitions occuring in Statement :  cubical-pi: ΠB csm-adjoin: (s;u) cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} csm-comp: F cube-set-map: A ⟶ B cubical-set: CubicalSet all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a csm-ap-type: (AF)s cubical-pi: ΠB cubical-pi-family: cubical-pi-family(X;A;B;I;a)
Lemmas referenced :  cubical-type-equal csm-ap-type_wf cubical-pi_wf cube-set-map_wf cubical-type_wf cube-context-adjoin_wf cubical-set_wf I-cube_wf list_wf coordinate_name_wf csm-cubical-pi-family cubical-pi-family_wf csm-ap_wf name-morph_wf cubical-pi-family-comp cube-set-restriction_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis equalityTransitivity equalitySymmetry independent_isectElimination sqequalRule dependent_pairEquality lambdaEquality dependent_functionElimination applyEquality because_Cache functionEquality

Latex:
\mforall{}X,Delta:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.  \mforall{}s:Delta  {}\mrightarrow{}  X.
    ((\mPi{}A  B)s  =  Delta  \mvdash{}  \mPi{}(A)s  (B)(s  o  p;q))



Date html generated: 2018_05_23-PM-06_29_44
Last ObjectModification: 2018_05_20-PM-04_11_47

Theory : cubical!sets


Home Index