Nuprl Lemma : cu-cube-filler_wf

[I:Cname List]. ∀[alpha:c𝕌(I)].
  (cu-cube-filler(alpha) ∈ L:(Cname List)
   ⟶ f:name-morph(I;L)
   ⟶ J:(nameset(L) List)
   ⟶ x:nameset(L)
   ⟶ i:ℕ2
   ⟶ A-open-box(unit-cube(I);Kan-type(alpha);L;f;J;x;i)
   ⟶ cu-cube-family(alpha;L;f))


Proof




Definitions occuring in Statement :  cu-cube-filler: cu-cube-filler(alpha) cu-cube-family: cu-cube-family(alpha;L;f) cubical-universe: c𝕌 Kan-type: Kan-type(Ak) A-open-box: A-open-box(X;A;I;alpha;J;x;i) unit-cube: unit-cube(I) I-cube: X(I) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cu-cube-filler: cu-cube-filler(alpha) cu-cube-family: cu-cube-family(alpha;L;f) Kan-type: Kan-type(Ak) pi1: fst(t) pi2: snd(t)
Lemmas referenced :  cubical-universe-I-cube I-cube_wf cubical-universe_wf list_wf coordinate_name_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lemma_by_obid isectElimination thin hypothesisEquality hypothesis setElimination rename productElimination axiomEquality equalityTransitivity equalitySymmetry instantiate isect_memberEquality because_Cache

Latex:
\mforall{}[I:Cname  List].  \mforall{}[alpha:c\mBbbU{}(I)].
    (cu-cube-filler(alpha)  \mmember{}  L:(Cname  List)
      {}\mrightarrow{}  f:name-morph(I;L)
      {}\mrightarrow{}  J:(nameset(L)  List)
      {}\mrightarrow{}  x:nameset(L)
      {}\mrightarrow{}  i:\mBbbN{}2
      {}\mrightarrow{}  A-open-box(unit-cube(I);Kan-type(alpha);L;f;J;x;i)
      {}\mrightarrow{}  cu-cube-family(alpha;L;f))



Date html generated: 2016_06_16-PM-08_08_04
Last ObjectModification: 2015_12_28-PM-04_11_31

Theory : cubical!sets


Home Index