Nuprl Lemma : cu-cube-filler_wf
∀[I:Cname List]. ∀[alpha:c𝕌(I)].
  (cu-cube-filler(alpha) ∈ L:(Cname List)
   ⟶ f:name-morph(I;L)
   ⟶ J:(nameset(L) List)
   ⟶ x:nameset(L)
   ⟶ i:ℕ2
   ⟶ A-open-box(unit-cube(I);Kan-type(alpha);L;f;J;x;i)
   ⟶ cu-cube-family(alpha;L;f))
Proof
Definitions occuring in Statement : 
cu-cube-filler: cu-cube-filler(alpha)
, 
cu-cube-family: cu-cube-family(alpha;L;f)
, 
cubical-universe: c𝕌
, 
Kan-type: Kan-type(Ak)
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
unit-cube: unit-cube(I)
, 
I-cube: X(I)
, 
name-morph: name-morph(I;J)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cu-cube-filler: cu-cube-filler(alpha)
, 
cu-cube-family: cu-cube-family(alpha;L;f)
, 
Kan-type: Kan-type(Ak)
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
cubical-universe-I-cube, 
I-cube_wf, 
cubical-universe_wf, 
list_wf, 
coordinate_name_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[I:Cname  List].  \mforall{}[alpha:c\mBbbU{}(I)].
    (cu-cube-filler(alpha)  \mmember{}  L:(Cname  List)
      {}\mrightarrow{}  f:name-morph(I;L)
      {}\mrightarrow{}  J:(nameset(L)  List)
      {}\mrightarrow{}  x:nameset(L)
      {}\mrightarrow{}  i:\mBbbN{}2
      {}\mrightarrow{}  A-open-box(unit-cube(I);Kan-type(alpha);L;f;J;x;i)
      {}\mrightarrow{}  cu-cube-family(alpha;L;f))
Date html generated:
2016_06_16-PM-08_08_04
Last ObjectModification:
2015_12_28-PM-04_11_31
Theory : cubical!sets
Home
Index