Nuprl Lemma : cubical-term-equal2
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[u,z:{X ⊢ _:A}].
  u = z ∈ {X ⊢ _:A} supposing ∀I:Cname List. ∀a:X(I).  ((u I a) = (z I a) ∈ ((fst(A)) I a))
Proof
Definitions occuring in Statement : 
cubical-term: {X ⊢ _:AF}
, 
cubical-type: {X ⊢ _}
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
coordinate_name: Cname
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
cubical-type: {X ⊢ _}
, 
pi1: fst(t)
, 
cubical-term: {X ⊢ _:AF}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
cubical-term_wf, 
cubical-type_wf, 
cubical-set_wf, 
I-cube_wf, 
list_wf, 
coordinate_name_wf, 
all_wf, 
equal_wf, 
name-morph_wf, 
cube-set-restriction_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
setElimination, 
rename, 
productElimination, 
sqequalRule, 
applyEquality, 
introduction, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
functionExtensionality
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u,z:\{X  \mvdash{}  \_:A\}].
    u  =  z  supposing  \mforall{}I:Cname  List.  \mforall{}a:X(I).    ((u  I  a)  =  (z  I  a))
Date html generated:
2016_06_16-PM-05_40_18
Last ObjectModification:
2015_12_28-PM-04_35_33
Theory : cubical!sets
Home
Index