Nuprl Lemma : name-morph-inv-eq-domain
∀[I,J:Cname List]. ∀[f:name-morph(I;J)]. ∀[x:name-morph-domain(f;I)].  ((name-morph-inv(I;f) (f x)) = x ∈ nameset(I))
Proof
Definitions occuring in Statement : 
name-morph-inv: name-morph-inv(I;f)
, 
name-morph-domain: name-morph-domain(f;I)
, 
name-morph: name-morph(I;J)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
name-morph-domain: name-morph-domain(f;I)
, 
nameset: nameset(L)
, 
all: ∀x:A. B[x]
, 
name-morph: name-morph(I;J)
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
true: True
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
name-morph-inv-eq, 
name-morph-domain_wf, 
name-morph_wf, 
list_wf, 
coordinate_name_wf, 
member_filter_2, 
isname_wf, 
l_member_wf, 
squash_wf, 
true_wf, 
nameset_wf, 
iff_weakening_equal, 
equal_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
lambdaEquality, 
applyEquality, 
sqequalRule, 
setEquality, 
productElimination, 
independent_functionElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_set_memberEquality, 
independent_isectElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
because_Cache
Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].  \mforall{}[x:name-morph-domain(f;I)].
    ((name-morph-inv(I;f)  (f  x))  =  x)
Date html generated:
2017_10_05-AM-10_06_13
Last ObjectModification:
2017_07_28-AM-11_16_17
Theory : cubical!sets
Home
Index