Nuprl Lemma : name-morph-inv-eq
∀[I,J:Cname List]. ∀[f:name-morph(I;J)]. ∀[x:nameset(I)].
  (name-morph-inv(I;f) (f x)) = x ∈ nameset(I) supposing ↑isname(f x)
Proof
Definitions occuring in Statement : 
name-morph-inv: name-morph-inv(I;f)
, 
name-morph: name-morph(I;J)
, 
isname: isname(z)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
name-morph-inv: name-morph-inv(I;f)
, 
name-morph: name-morph(I;J)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
bfalse: ff
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
istype: istype(T)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
not: ¬A
, 
false: False
, 
cons: [a / b]
, 
top: Top
, 
name-morph-range: name-morph-range(f;I)
, 
exists: ∃x:A. B[x]
, 
assert: ↑b
, 
bnot: ¬bb
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
Lemmas referenced : 
assert-isname, 
isname_wf, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
btrue_wf, 
eq_int_wf, 
bfalse_wf, 
istype-assert, 
nameset_wf, 
name-morph_wf, 
list_wf, 
coordinate_name_wf, 
list-subtype, 
member_filter_2, 
subtype_rel_dep_function, 
bool_wf, 
l_member_wf, 
l_member-settype, 
iff_transitivity, 
assert_wf, 
nameset_subtype_extd-nameset, 
member_wf, 
iff_weakening_uiff, 
assert_of_band, 
equal_wf, 
assert_of_eq_int, 
istype-int, 
filter_wf5, 
list-cases, 
member-implies-null-eq-bfalse, 
null_nil_lemma, 
btrue_neq_bfalse, 
product_subtype_list, 
hd_member, 
assert_elim, 
null_wf3, 
subtype_rel_list, 
top_wf, 
istype-void, 
null_cons_lemma, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
set_wf, 
subtype_rel_self, 
name-morph-inv_wf, 
assert-bnot, 
bool_cases_sqequal, 
eqff_to_assert, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
productElimination, 
independent_isectElimination, 
lambdaEquality_alt, 
dependent_functionElimination, 
unionElimination, 
instantiate, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
universeIsType, 
setEquality, 
lambdaFormation_alt, 
setIsType, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productEquality, 
closedConclusion, 
intEquality, 
promote_hyp, 
productIsType, 
equalityIsType1, 
voidElimination, 
hypothesis_subsumption, 
dependent_pairFormation_alt, 
equalityIsType3, 
natural_numberEquality, 
lambdaEquality, 
lambdaFormation, 
cumulativity, 
dependent_pairFormation, 
equalityElimination, 
functionEquality, 
impliesFunctionality, 
addLevel, 
dependent_set_memberEquality
Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].  \mforall{}[x:nameset(I)].
    (name-morph-inv(I;f)  (f  x))  =  x  supposing  \muparrow{}isname(f  x)
Date html generated:
2019_11_05-PM-00_24_32
Last ObjectModification:
2018_11_08-PM-00_19_56
Theory : cubical!sets
Home
Index