Nuprl Lemma : name-morph-inv-eq

[I,J:Cname List]. ∀[f:name-morph(I;J)]. ∀[x:nameset(I)].
  (name-morph-inv(I;f) (f x)) x ∈ nameset(I) supposing ↑isname(f x)


Proof




Definitions occuring in Statement :  name-morph-inv: name-morph-inv(I;f) name-morph: name-morph(I;J) isname: isname(z) nameset: nameset(L) coordinate_name: Cname list: List assert: b uimplies: supposing a uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a name-morph-inv: name-morph-inv(I;f) name-morph: name-morph(I;J) uiff: uiff(P;Q) and: P ∧ Q all: x:A. B[x] or: P ∨ Q sq_type: SQType(T) implies:  Q guard: {T} subtype_rel: A ⊆B nameset: nameset(L) coordinate_name: Cname int_upper: {i...} bfalse: ff band: p ∧b q ifthenelse: if then else fi  so_lambda: λ2x.t[x] so_apply: x[s] prop: istype: istype(T) iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B not: ¬A false: False cons: [a b] top: Top name-morph-range: name-morph-range(f;I) exists: x:A. B[x] assert: b bnot: ¬bb btrue: tt it: unit: Unit bool: 𝔹
Lemmas referenced :  assert-isname isname_wf bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert band_wf btrue_wf eq_int_wf bfalse_wf istype-assert nameset_wf name-morph_wf list_wf coordinate_name_wf list-subtype member_filter_2 subtype_rel_dep_function bool_wf l_member_wf l_member-settype iff_transitivity assert_wf nameset_subtype_extd-nameset member_wf iff_weakening_uiff assert_of_band equal_wf assert_of_eq_int istype-int filter_wf5 list-cases member-implies-null-eq-bfalse null_nil_lemma btrue_neq_bfalse product_subtype_list hd_member assert_elim null_wf3 subtype_rel_list top_wf istype-void null_cons_lemma set_subtype_base le_wf int_subtype_base set_wf subtype_rel_self name-morph-inv_wf assert-bnot bool_cases_sqequal eqff_to_assert false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality setElimination rename because_Cache hypothesis productElimination independent_isectElimination lambdaEquality_alt dependent_functionElimination unionElimination instantiate independent_functionElimination equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies universeIsType setEquality lambdaFormation_alt setIsType dependent_set_memberEquality_alt independent_pairFormation productEquality closedConclusion intEquality promote_hyp productIsType equalityIsType1 voidElimination hypothesis_subsumption dependent_pairFormation_alt equalityIsType3 natural_numberEquality lambdaEquality lambdaFormation cumulativity dependent_pairFormation equalityElimination functionEquality impliesFunctionality addLevel dependent_set_memberEquality

Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].  \mforall{}[x:nameset(I)].
    (name-morph-inv(I;f)  (f  x))  =  x  supposing  \muparrow{}isname(f  x)



Date html generated: 2019_11_05-PM-00_24_32
Last ObjectModification: 2018_11_08-PM-00_19_56

Theory : cubical!sets


Home Index