Nuprl Lemma : unit-cube-is-yoneda

[I:Cname List]. (unit-cube(I) rep-pre-sheaf(op-cat(NameCat);I) ∈ CubicalSet)


Proof




Definitions occuring in Statement :  unit-cube: unit-cube(I) cubical-set: CubicalSet name-cat: NameCat coordinate_name: Cname rep-pre-sheaf: rep-pre-sheaf(C;X) op-cat: op-cat(C) list: List uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-set: CubicalSet squash: T so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] subtype_rel: A ⊆B prop: name-cat: NameCat op-cat: op-cat(C) rep-pre-sheaf: rep-pre-sheaf(C;X) unit-cube: unit-cube(I) spreadn: spread4 cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) pi2: snd(t) pi1: fst(t) all: x:A. B[x]
Lemmas referenced :  id-morph_wf equal-wf-T-base compose_wf name-comp_wf equal_wf all_wf name-morph_wf coordinate_name_wf list_wf set_wf unit-cube_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality lambdaEquality setElimination rename hypothesis sqequalRule imageMemberEquality baseClosed instantiate productEquality functionEquality cumulativity universeEquality productElimination because_Cache introduction imageElimination dependent_set_memberEquality dependent_pairEquality

Latex:
\mforall{}[I:Cname  List].  (unit-cube(I)  =  rep-pre-sheaf(op-cat(NameCat);I))



Date html generated: 2016_06_16-PM-05_37_53
Last ObjectModification: 2016_01_18-PM-04_57_00

Theory : cubical!sets


Home Index