Nuprl Lemma : unit-cube-is-yoneda
∀[I:Cname List]. (unit-cube(I) = rep-pre-sheaf(op-cat(NameCat);I) ∈ CubicalSet)
Proof
Definitions occuring in Statement : 
unit-cube: unit-cube(I)
, 
cubical-set: CubicalSet
, 
name-cat: NameCat
, 
coordinate_name: Cname
, 
rep-pre-sheaf: rep-pre-sheaf(C;X)
, 
op-cat: op-cat(C)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-set: CubicalSet
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
name-cat: NameCat
, 
op-cat: op-cat(C)
, 
rep-pre-sheaf: rep-pre-sheaf(C;X)
, 
unit-cube: unit-cube(I)
, 
spreadn: spread4, 
cat-comp: cat-comp(C)
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
id-morph_wf, 
equal-wf-T-base, 
compose_wf, 
name-comp_wf, 
equal_wf, 
all_wf, 
name-morph_wf, 
coordinate_name_wf, 
list_wf, 
set_wf, 
unit-cube_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
hypothesis, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
instantiate, 
productEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
productElimination, 
because_Cache, 
introduction, 
imageElimination, 
dependent_set_memberEquality, 
dependent_pairEquality
Latex:
\mforall{}[I:Cname  List].  (unit-cube(I)  =  rep-pre-sheaf(op-cat(NameCat);I))
Date html generated:
2016_06_16-PM-05_37_53
Last ObjectModification:
2016_01_18-PM-04_57_00
Theory : cubical!sets
Home
Index