Nuprl Lemma : unit-cube-map_wf

[I,J:Cname List]. ∀[f:name-morph(I;J)].  (unit-cube-map(f) ∈ unit-cube(J) ⟶ unit-cube(I))


Proof




Definitions occuring in Statement :  unit-cube-map: unit-cube-map(f) unit-cube: unit-cube(I) cube-set-map: A ⟶ B name-morph: name-morph(I;J) coordinate_name: Cname list: List uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] unit-cube-map: unit-cube-map(f) member: t ∈ T unit-cube: unit-cube(I) type-cat: TypeCat cat-arrow: cat-arrow(C) name-cat: NameCat cat-ob: cat-ob(C) pi1: fst(t) pi2: snd(t) all: x:A. B[x] top: Top cat-comp: cat-comp(C) compose: g cube-set-map: A ⟶ B nat-trans: nat-trans(C;D;F;G)
Lemmas referenced :  name-morph_wf list_wf coordinate_name_wf ob_pair_lemma istype-void name-comp_wf arrow_pair_lemma name-comp-assoc cat-ob_wf name-cat_wf cat-arrow_wf type-cat_wf cat-comp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType sqequalRule dependent_functionElimination isect_memberEquality_alt voidElimination lambdaEquality_alt because_Cache lambdaFormation_alt functionExtensionality_alt dependent_set_memberEquality_alt functionIsType applyEquality equalityIstype instantiate

Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].    (unit-cube-map(f)  \mmember{}  unit-cube(J)  {}\mrightarrow{}  unit-cube(I))



Date html generated: 2019_11_05-PM-00_26_00
Last ObjectModification: 2018_12_10-AM-09_54_01

Theory : cubical!sets


Home Index