Nuprl Lemma : unit-cube-map_wf
∀[I,J:Cname List]. ∀[f:name-morph(I;J)].  (unit-cube-map(f) ∈ unit-cube(J) ⟶ unit-cube(I))
Proof
Definitions occuring in Statement : 
unit-cube-map: unit-cube-map(f)
, 
unit-cube: unit-cube(I)
, 
cube-set-map: A ⟶ B
, 
name-morph: name-morph(I;J)
, 
coordinate_name: Cname
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
unit-cube-map: unit-cube-map(f)
, 
member: t ∈ T
, 
unit-cube: unit-cube(I)
, 
type-cat: TypeCat
, 
cat-arrow: cat-arrow(C)
, 
name-cat: NameCat
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
cat-comp: cat-comp(C)
, 
compose: f o g
, 
cube-set-map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
Lemmas referenced : 
name-morph_wf, 
list_wf, 
coordinate_name_wf, 
ob_pair_lemma, 
istype-void, 
name-comp_wf, 
arrow_pair_lemma, 
name-comp-assoc, 
cat-ob_wf, 
name-cat_wf, 
cat-arrow_wf, 
type-cat_wf, 
cat-comp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
lambdaEquality_alt, 
because_Cache, 
lambdaFormation_alt, 
functionExtensionality_alt, 
dependent_set_memberEquality_alt, 
functionIsType, 
applyEquality, 
equalityIstype, 
instantiate
Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].    (unit-cube-map(f)  \mmember{}  unit-cube(J)  {}\mrightarrow{}  unit-cube(I))
Date html generated:
2019_11_05-PM-00_26_00
Last ObjectModification:
2018_12_10-AM-09_54_01
Theory : cubical!sets
Home
Index