Nuprl Lemma : case-type-1

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}].
  ∀[A:{Gamma ⊢ _}]. ∀[B:Top × Top].  Gamma ⊢ (if phi then else B) supposing phi 1(𝔽) ∈ {Gamma ⊢ _:𝔽}


Proof




Definitions occuring in Statement :  case-type: (if phi then else B) same-cubical-type: Gamma ⊢ B face-1: 1(𝔽) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] top: Top product: x:A × B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a same-cubical-type: Gamma ⊢ B subtype_rel: A ⊆B squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  case-type-same1 thin-context-subset face-0_wf istype-top cubical-type_wf face-1_wf cubical-term_wf face-type_wf cubical_set_wf empty-context-subset-lemma6 subset-cubical-type context-subset_wf face-1-implies-subset face-term-implies_wf squash_wf true_wf subtype_rel_self iff_weakening_equal face-term-implies-same
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productIsType because_Cache universeIsType equalityIstype inhabitedIsType instantiate equalityTransitivity equalitySymmetry applyEquality independent_isectElimination sqequalRule lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].
    \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:Top  \mtimes{}  Top].    Gamma  \mvdash{}  (if  phi  then  A  else  B)  =  A  supposing  phi  =  1(\mBbbF{})



Date html generated: 2020_05_20-PM-04_14_21
Last ObjectModification: 2020_04_10-AM-04_43_07

Theory : cubical!type!theory


Home Index