Nuprl Lemma : closed-cubical-term_wf

[T:{ * ⊢ _}]. (closed-cubical-term(T) ∈ Type)


Proof




Definitions occuring in Statement :  closed-cubical-term: closed-cubical-term(T) closed-cubical-type: * ⊢ _} uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T closed-cubical-term: closed-cubical-term(T) closed-cubical-type: * ⊢ _} pi1: fst(t) so_lambda: λ2x.t[x] pi2: snd(t) subtype_rel: A ⊆B so_apply: x[s] all: x:A. B[x] prop:
Lemmas referenced :  fset_wf nat_wf all_wf names-hom_wf equal_wf subtype_rel_self closed-cubical-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule setEquality functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis setElimination rename productElimination applyEquality hypothesisEquality because_Cache lambdaEquality_alt universeIsType inhabitedIsType axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:\{  *  \mvdash{}  \_\}].  (closed-cubical-term(T)  \mmember{}  Type)



Date html generated: 2020_05_20-PM-01_52_50
Last ObjectModification: 2020_03_20-PM-00_34_50

Theory : cubical!type!theory


Home Index