Nuprl Lemma : const-transport-fun_wf
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)].  (ConstTrans(A) ∈ {Gamma ⊢ _:(A ⟶ A)})
Proof
Definitions occuring in Statement : 
const-transport-fun: ConstTrans(A)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
cubical-fun: (A ⟶ B)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
const-transport-fun: ConstTrans(A)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
cubical-lam_wf, 
transport-const_wf, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
csm-ap-type_wf, 
cc-fst_wf, 
csm-composition_wf, 
cc-snd_wf, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
applyEquality, 
because_Cache, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].    (ConstTrans(A)  \mmember{}  \{Gamma  \mvdash{}  \_:(A  {}\mrightarrow{}  A)\})
Date html generated:
2020_05_20-PM-04_18_58
Last ObjectModification:
2020_04_10-AM-04_54_45
Theory : cubical!type!theory
Home
Index