Nuprl Lemma : const-transport-fun_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)].  (ConstTrans(A) ∈ {Gamma ⊢ _:(A ⟶ A)})


Proof




Definitions occuring in Statement :  const-transport-fun: ConstTrans(A) composition-op: Gamma ⊢ CompOp(A) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T const-transport-fun: ConstTrans(A) subtype_rel: A ⊆B
Lemmas referenced :  cubical-lam_wf transport-const_wf cube-context-adjoin_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j csm-ap-type_wf cc-fst_wf csm-composition_wf cc-snd_wf composition-op_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality because_Cache hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].    (ConstTrans(A)  \mmember{}  \{Gamma  \mvdash{}  \_:(A  {}\mrightarrow{}  A)\})



Date html generated: 2020_05_20-PM-04_18_58
Last ObjectModification: 2020_04_10-AM-04_54_45

Theory : cubical!type!theory


Home Index