Nuprl Lemma : transport-const_wf

[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G ⊢ CompOp(A)]. ∀[a:{G ⊢ _:A}].  (transport-const(G;cA;a) ∈ {G ⊢ _:A})


Proof




Definitions occuring in Statement :  transport-const: transport-const(G;cA;a) composition-op: Gamma ⊢ CompOp(A) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B cubical-type: {X ⊢ _} csm-id: 1(X) csm-ap-type: (AF)s cc-fst: p interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap: (s)x csm-adjoin: (s;u) pi1: fst(t) interval-1: 1(𝕀) uimplies: supposing a transport-const: transport-const(G;cA;a) squash: T true: True
Lemmas referenced :  transport_wf csm-ap-type_wf cube-context-adjoin_wf interval-type_wf cc-fst_wf csm-composition_wf subset-cubical-term2 sub_cubical_set_self csm-id_wf csm-ap-id-type cubical-term_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 composition-op_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality because_Cache hypothesis sqequalRule setElimination rename productElimination independent_isectElimination equalitySymmetry lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity hyp_replacement universeIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  \mvdash{}  CompOp(A)].  \mforall{}[a:\{G  \mvdash{}  \_:A\}].    (transport-const(G;cA;a)  \mmember{}  \{G  \mvdash{}  \_:A\})



Date html generated: 2020_05_20-PM-04_18_45
Last ObjectModification: 2020_04_10-AM-04_54_18

Theory : cubical!type!theory


Home Index