Nuprl Lemma : transport-const_wf
∀[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G ⊢ CompOp(A)]. ∀[a:{G ⊢ _:A}].  (transport-const(G;cA;a) ∈ {G ⊢ _:A})
Proof
Definitions occuring in Statement : 
transport-const: transport-const(G;cA;a)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
cubical-type: {X ⊢ _}
, 
csm-id: 1(X)
, 
csm-ap-type: (AF)s
, 
cc-fst: p
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-ap: (s)x
, 
csm-adjoin: (s;u)
, 
pi1: fst(t)
, 
interval-1: 1(𝕀)
, 
uimplies: b supposing a
, 
transport-const: transport-const(G;cA;a)
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
transport_wf, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cc-fst_wf, 
csm-composition_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-id_wf, 
csm-ap-id-type, 
cubical-term_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
equalitySymmetry, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
hyp_replacement, 
universeIsType, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  \mvdash{}  CompOp(A)].  \mforall{}[a:\{G  \mvdash{}  \_:A\}].    (transport-const(G;cA;a)  \mmember{}  \{G  \mvdash{}  \_:A\})
Date html generated:
2020_05_20-PM-04_18_45
Last ObjectModification:
2020_04_10-AM-04_54_18
Theory : cubical!type!theory
Home
Index