Nuprl Lemma : dM1-meet-dM1
∀[I:Top]. (1 ∧ 1 ~ 1)
Proof
Definitions occuring in Statement : 
dM1: 1
, 
dM: dM(I)
, 
lattice-meet: a ∧ b
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
lattice-meet: a ∧ b
, 
record-select: r.x
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
btrue: tt
, 
fset-ac-glb: fset-ac-glb(eq;ac1;ac2)
, 
fset-minimals: fset-minimals(x,y.less[x; y]; s)
, 
fset-filter: {x ∈ s | P[x]}
, 
filter: filter(P;l)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
dM1: 1
, 
lattice-1: 1
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
nil: []
, 
it: ⋅
, 
fset-union: x ⋃ y
, 
l-union: as ⋃ bs
, 
fset-image: f"(s)
, 
insert: insert(a;L)
, 
eval_list: eval_list(t)
, 
deq-member: x ∈b L
, 
fset-minimal: fset-minimal(x,y.less[x; y];s;a)
, 
fset-null: fset-null(s)
, 
null: null(as)
, 
f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys)
, 
band: p ∧b q
, 
deq-f-subset: deq-f-subset(eq)
, 
isl: isl(x)
, 
decidable__f-subset, 
decidable__all_fset, 
decidable_functionality, 
iff_preserves_decidability, 
decidable__assert, 
empty-fset: {}
, 
bnot: ¬bb
, 
deq-fset: deq-fset(eq)
, 
decidable__equal_fset, 
decidable__and2, 
decidable__and, 
member: t ∈ T
Lemmas referenced : 
top_wf, 
decidable__f-subset, 
decidable__all_fset, 
decidable_functionality, 
iff_preserves_decidability, 
decidable__assert, 
decidable__equal_fset, 
decidable__and2, 
decidable__and
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}[I:Top].  (1  \mwedge{}  1  \msim{}  1)
Date html generated:
2018_05_23-AM-08_27_22
Last ObjectModification:
2017_11_26-PM-01_51_57
Theory : cubical!type!theory
Home
Index