Nuprl Lemma : decode-equivTerm
ā[G:jā¢]. ā[A,B:{G ā¢ _:cš}]. (decode(equivTerm(G;A;B)) = Equiv(decode(A);decode(B)) ā {G ā¢ _})
Proof
Definitions occuring in Statement :
equivTerm: equivTerm(G;A;B)
,
universe-decode: decode(t)
,
cubical-universe: cš
,
cubical-equiv: Equiv(T;A)
,
cubical-term: {X ā¢ _:A}
,
cubical-type: {X ā¢ _}
,
cubical_set: CubicalSet
,
uall: ā[x:A]. B[x]
,
equal: s = t ā T
Definitions unfolded in proof :
uall: ā[x:A]. B[x]
,
equivTerm: equivTerm(G;A;B)
,
member: t ā T
,
all: āx:A. B[x]
Lemmas referenced :
universe-decode-encode,
cubical-equiv_wf,
universe-decode_wf,
equiv-comp_wf,
universe-comp-op_wf,
istype-cubical-universe-term,
cubical_set_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
because_Cache,
hypothesisEquality,
hypothesis,
dependent_functionElimination,
universeIsType,
instantiate
Latex:
\mforall{}[G:j\mvdash{}]. \mforall{}[A,B:\{G \mvdash{} \_:c\mBbbU{}\}]. (decode(equivTerm(G;A;B)) = Equiv(decode(A);decode(B)))
Date html generated:
2020_05_20-PM-07_34_06
Last ObjectModification:
2020_04_30-AM-00_11_49
Theory : cubical!type!theory
Home
Index