Nuprl Lemma : equal-cubical-equiv-at

[X:j⊢]. ∀[T,A:{X ⊢ _}]. ∀[I:fset(ℕ)]. ∀[a:X(I)]. ∀[x:Equiv(T;A)(a)]. ∀[y:u:(T ⟶ A)(a) × IsEquiv((T)p;(A)p;q)((a;u))].
  y ∈ Equiv(T;A)(a) supposing y ∈ (u:(T ⟶ A)(a) × IsEquiv((T)p;(A)p;q)((a;u)))


Proof




Definitions occuring in Statement :  cubical-equiv: Equiv(T;A) is-cubical-equiv: IsEquiv(T;A;w) cubical-fun: (A ⟶ B) cc-snd: q cc-fst: p cc-adjoin-cube: (v;u) cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type-at: A(a) cubical-type: {X ⊢ _} I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] product: x:A × B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] cubical-equiv: Equiv(T;A) member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B
Lemmas referenced :  cubical-sigma-at istype-cubical-type-at cubical-equiv_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 I_cube_wf fset_wf nat_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin Error :memTop,  hypothesis sqequalRule equalityIstype inhabitedIsType hypothesisEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies instantiate applyEquality universeIsType because_Cache

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T,A:\{X  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].  \mforall{}[x:Equiv(T;A)(a)].
\mforall{}[y:u:(T  {}\mrightarrow{}  A)(a)  \mtimes{}  IsEquiv((T)p;(A)p;q)((a;u))].
    x  =  y  supposing  x  =  y



Date html generated: 2020_05_20-PM-03_26_45
Last ObjectModification: 2020_04_06-PM-06_45_00

Theory : cubical!type!theory


Home Index