Nuprl Lemma : equiv_term-0

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}].
  ∀[A,T:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(T;A)}]. ∀[a:{G ⊢ _:A}]. ∀[t,c:Top]. ∀[cA:G +⊢ Compositon(A)].
  ∀[cT:G +⊢ Compositon(T)].
    (equiv [phi ⊢→ (t,c)] a
    transprt(G;(fiber-comp(G;T;A;equiv-fun(f);a;cT;cA))p;contr-center(equiv-contr(f;a)))
    ∈ {G ⊢ _:Fiber(equiv-fun(f);a)}) 
  supposing phi 0(𝔽) ∈ {G ⊢ _:𝔽}


Proof




Definitions occuring in Statement :  equiv_term: equiv [phi ⊢→ (t,c)] a fiber-comp: fiber-comp(X;T;A;w;a;cT;cA) transprt: transprt(G;cA;a0) csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) equiv-contr: equiv-contr(f;a) equiv-fun: equiv-fun(f) cubical-equiv: Equiv(T;A) cubical-fiber: Fiber(w;a) contr-center: contr-center(c) face-0: 0(𝔽) face-type: 𝔽 interval-type: 𝕀 cc-fst: p cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] top: Top equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a equiv_term: equiv [phi ⊢→ (t,c)] a subtype_rel: A ⊆B
Lemmas referenced :  equiv-term-0 fiber-comp_wf equiv-fun_wf composition-structure_wf cubical_set_cumulativity-i-j istype-top istype-cubical-term cubical-equiv_wf cubical-type_wf face-0_wf face-type_wf cubical_set_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination instantiate applyEquality because_Cache sqequalRule universeIsType inhabitedIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies equalityIstype

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].
    \mforall{}[A,T:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(T;A)\}].  \mforall{}[a:\{G  \mvdash{}  \_:A\}].  \mforall{}[t,c:Top].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].
    \mforall{}[cT:G  +\mvdash{}  Compositon(T)].
        (equiv  f  [phi  \mvdash{}\mrightarrow{}  (t,c)]  a
        =  transprt(G;(fiber-comp(G;T;A;equiv-fun(f);a;cT;cA))p;contr-center(equiv-contr(f;a)))) 
    supposing  phi  =  0(\mBbbF{})



Date html generated: 2020_05_20-PM-05_36_33
Last ObjectModification: 2020_04_21-AM-09_44_20

Theory : cubical!type!theory


Home Index