Nuprl Lemma : equiv_term-0
∀[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}].
  ∀[A,T:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(T;A)}]. ∀[a:{G ⊢ _:A}]. ∀[t,c:Top]. ∀[cA:G +⊢ Compositon(A)].
  ∀[cT:G +⊢ Compositon(T)].
    (equiv f [phi ⊢→ (t,c)] a
    = transprt(G;(fiber-comp(G;T;A;equiv-fun(f);a;cT;cA))p;contr-center(equiv-contr(f;a)))
    ∈ {G ⊢ _:Fiber(equiv-fun(f);a)}) 
  supposing phi = 0(𝔽) ∈ {G ⊢ _:𝔽}
Proof
Definitions occuring in Statement : 
equiv_term: equiv f [phi ⊢→ (t,c)] a
, 
fiber-comp: fiber-comp(X;T;A;w;a;cT;cA)
, 
transprt: transprt(G;cA;a0)
, 
csm-comp-structure: (cA)tau
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
equiv-contr: equiv-contr(f;a)
, 
equiv-fun: equiv-fun(f)
, 
cubical-equiv: Equiv(T;A)
, 
cubical-fiber: Fiber(w;a)
, 
contr-center: contr-center(c)
, 
face-0: 0(𝔽)
, 
face-type: 𝔽
, 
interval-type: 𝕀
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
equiv_term: equiv f [phi ⊢→ (t,c)] a
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
equiv-term-0, 
fiber-comp_wf, 
equiv-fun_wf, 
composition-structure_wf, 
cubical_set_cumulativity-i-j, 
istype-top, 
istype-cubical-term, 
cubical-equiv_wf, 
cubical-type_wf, 
face-0_wf, 
face-type_wf, 
cubical_set_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
instantiate, 
applyEquality, 
because_Cache, 
sqequalRule, 
universeIsType, 
inhabitedIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
equalityIstype
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].
    \mforall{}[A,T:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(T;A)\}].  \mforall{}[a:\{G  \mvdash{}  \_:A\}].  \mforall{}[t,c:Top].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].
    \mforall{}[cT:G  +\mvdash{}  Compositon(T)].
        (equiv  f  [phi  \mvdash{}\mrightarrow{}  (t,c)]  a
        =  transprt(G;(fiber-comp(G;T;A;equiv-fun(f);a;cT;cA))p;contr-center(equiv-contr(f;a)))) 
    supposing  phi  =  0(\mBbbF{})
Date html generated:
2020_05_20-PM-05_36_33
Last ObjectModification:
2020_04_21-AM-09_44_20
Theory : cubical!type!theory
Home
Index