Nuprl Lemma : face-one-interval-0
∀[H:j⊢]. ((0(𝕀)=1) = 0(𝔽) ∈ {H ⊢ _:𝔽})
Proof
Definitions occuring in Statement : 
face-one: (i=1)
, 
face-0: 0(𝔽)
, 
face-type: 𝔽
, 
interval-0: 0(𝕀)
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
face-0: 0(𝔽)
, 
interval-0: 0(𝕀)
, 
face-one: (i=1)
, 
cubical-term-at: u(a)
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
uimplies: b supposing a
Lemmas referenced : 
dM-to-FL-dM0, 
subtype_rel_self, 
cubical-type-at_wf_face-type, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-term-equal, 
face-type_wf, 
face-one_wf, 
interval-0_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
functionExtensionality, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
universeIsType, 
instantiate
Latex:
\mforall{}[H:j\mvdash{}].  ((0(\mBbbI{})=1)  =  0(\mBbbF{}))
Date html generated:
2020_05_20-PM-02_44_15
Last ObjectModification:
2020_04_04-PM-04_58_26
Theory : cubical!type!theory
Home
Index