Nuprl Lemma : filling_term_0

[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}]. ∀[T:{H.𝕀 ⊢ _}]. ∀[u:{H.𝕀(phi)p ⊢ _:T}]. ∀[a0:{H ⊢ _:(T)[0(𝕀)][phi |⟶ u[0]]}].
[cT:H.𝕀 ⊢ CompOp(T)].
  ((fill cT [phi ⊢→ u] a0)[0(𝕀)] a0 ∈ {H ⊢ _:(T)[0(𝕀)]})


Proof




Definitions occuring in Statement :  filling_term: fill cA [phi ⊢→ u] a0 composition-op: Gamma ⊢ CompOp(A) partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B filling_term: fill cA [phi ⊢→ u] a0 guard: {T}
Lemmas referenced :  fill_term_0 comp-op-to-comp-fun_wf2 cube-context-adjoin_wf interval-type_wf cubical-type-cumulativity2 composition-op_wf constrained-cubical-term_wf csm-ap-type_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-0 partial-term-0_wf cubical-term_wf context-subset_wf csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf thin-context-subset cubical-type_wf cubical_set_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality because_Cache sqequalRule universeIsType Error :memTop,  equalityTransitivity equalitySymmetry

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{H.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[u:\{H.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[a0:\{H  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  u[0]]\}].  \mforall{}[cT:H.\mBbbI{}  \mvdash{}  CompOp(T)].
    ((fill  cT  [phi  \mvdash{}\mrightarrow{}  u]  a0)[0(\mBbbI{})]  =  a0)



Date html generated: 2020_05_20-PM-04_54_01
Last ObjectModification: 2020_04_10-AM-11_33_12

Theory : cubical!type!theory


Home Index