Nuprl Lemma : p+-swap-interval

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[B:{Gamma ⊢ _}].  (((A)p+)swap-interval(Gamma;B) (A)p ∈ {Gamma.𝕀.(B)p ⊢ _})


Proof




Definitions occuring in Statement :  swap-interval: swap-interval(G;A) interval-type: 𝕀 csm+: tau+ cc-fst: p cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B cubical-type: {X ⊢ _} pi1: fst(t) pi2: snd(t) csm-ap-type: (AF)s cube-context-adjoin: X.A all: x:A. B[x] cc-fst: p csm-ap: (s)x swap-interval: swap-interval(G;A) csm+: tau+ csm-swap: csm-swap(G;A;B) csm-adjoin: (s;u) interval-type: 𝕀 constant-cubical-type: (X) cc-snd: q csm-ap-term: (t)s csm-comp: F compose: g and: P ∧ Q cube-set-restriction: f(s) uimplies: supposing a
Lemmas referenced :  cubical-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf cubical_set_wf I_cube_wf csm-ap-type_wf cc-fst_wf cubical-type-cumulativity2 fset_wf nat_wf names-hom_wf cube-set-restriction_wf I_cube_pair_redex_lemma csm-ap_wf subtype_rel_self cubical-type-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt equalitySymmetry cut universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate applyEquality sqequalRule setElimination rename productElimination dependent_pairEquality_alt functionExtensionality because_Cache functionIsType dependent_functionElimination Error :memTop,  lambdaEquality_alt equalityTransitivity independent_isectElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma  \mvdash{}  \_\}].    (((A)p+)swap-interval(Gamma;B)  =  (A)p)



Date html generated: 2020_05_20-PM-02_40_01
Last ObjectModification: 2020_04_04-PM-06_54_09

Theory : cubical!type!theory


Home Index