Nuprl Lemma : rev-transport-fun_wf
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)].
  (rev-transport-fun(Gamma;A;cA) ∈ {Gamma ⊢ _:((A)[1(𝕀)] ⟶ (A)[0(𝕀)])})
Proof
Definitions occuring in Statement : 
rev-transport-fun: rev-transport-fun(Gamma;A;cA)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
cubical-fun: (A ⟶ B)
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
, 
rev-type-line: (A)-
, 
rev-transport-fun: rev-transport-fun(Gamma;A;cA)
Lemmas referenced : 
csm-adjoin_wf, 
cubical_set_cumulativity-i-j, 
cube-context-adjoin_wf, 
interval-type_wf, 
cc-fst_wf, 
csm-interval-type, 
interval-rev_wf, 
cc-snd_wf, 
csm-composition_wf, 
transport-fun_wf, 
rev-type-line_wf, 
composition-op_wf, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf, 
rev-type-line-0, 
rev-type-line-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].
    (rev-transport-fun(Gamma;A;cA)  \mmember{}  \{Gamma  \mvdash{}  \_:((A)[1(\mBbbI{})]  {}\mrightarrow{}  (A)[0(\mBbbI{})])\})
Date html generated:
2020_05_20-PM-04_19_12
Last ObjectModification:
2020_04_10-AM-04_55_14
Theory : cubical!type!theory
Home
Index