Nuprl Lemma : rev-transport-fun_wf

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)].
  (rev-transport-fun(Gamma;A;cA) ∈ {Gamma ⊢ _:((A)[1(𝕀)] ⟶ (A)[0(𝕀)])})


Proof




Definitions occuring in Statement :  rev-transport-fun: rev-transport-fun(Gamma;A;cA) composition-op: Gamma ⊢ CompOp(A) interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-fun: (A ⟶ B) csm-id-adjoin: [u] cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) rev-type-line: (A)- rev-transport-fun: rev-transport-fun(Gamma;A;cA)
Lemmas referenced :  csm-adjoin_wf cubical_set_cumulativity-i-j cube-context-adjoin_wf interval-type_wf cc-fst_wf csm-interval-type interval-rev_wf cc-snd_wf csm-composition_wf transport-fun_wf rev-type-line_wf composition-op_wf cubical-type-cumulativity2 cubical-type_wf cubical_set_wf rev-type-line-0 rev-type-line-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache Error :memTop,  equalityTransitivity equalitySymmetry universeIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].
    (rev-transport-fun(Gamma;A;cA)  \mmember{}  \{Gamma  \mvdash{}  \_:((A)[1(\mBbbI{})]  {}\mrightarrow{}  (A)[0(\mBbbI{})])\})



Date html generated: 2020_05_20-PM-04_19_12
Last ObjectModification: 2020_04_10-AM-04_55_14

Theory : cubical!type!theory


Home Index