Nuprl Lemma : transport-fun_wf
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)].
  (transport-fun(Gamma;A;cA) ∈ {Gamma ⊢ _:((A)[0(𝕀)] ⟶ (A)[1(𝕀)])})
Proof
Definitions occuring in Statement : 
transport-fun: transport-fun(Gamma;A;cA)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
cubical-fun: (A ⟶ B)
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
transport-fun: transport-fun(Gamma;A;cA)
, 
cubical-type: {X ⊢ _}
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-ap-type: (AF)s
, 
cc-fst: p
, 
interval-type: 𝕀
, 
csm+: tau+
, 
csm-ap: (s)x
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
cc-snd: q
, 
constant-cubical-type: (X)
, 
csm-comp: G o F
, 
pi2: snd(t)
, 
compose: f o g
, 
pi1: fst(t)
, 
interval-1: 1(𝕀)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
composition-op_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_cumulativity-i-j, 
cubical_set_wf, 
cubical-lambda_wf, 
csm-ap-type_wf, 
csm-id-adjoin_wf-interval-0, 
csm-id-adjoin_wf-interval-1, 
cc-fst_wf, 
transport_wf, 
csm+_wf_interval, 
csm-composition_wf, 
cc-snd_wf, 
cubical-fun-as-cubical-pi, 
cubical-term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
universeIsType, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
setElimination, 
rename, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
hyp_replacement, 
inhabitedIsType, 
lambdaFormation_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
cumulativity, 
universeEquality, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].
    (transport-fun(Gamma;A;cA)  \mmember{}  \{Gamma  \mvdash{}  \_:((A)[0(\mBbbI{})]  {}\mrightarrow{}  (A)[1(\mBbbI{})])\})
Date html generated:
2020_05_20-PM-04_18_31
Last ObjectModification:
2020_04_11-PM-06_37_44
Theory : cubical!type!theory
Home
Index