Nuprl Lemma : transport-fun_wf

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)].
  (transport-fun(Gamma;A;cA) ∈ {Gamma ⊢ _:((A)[0(𝕀)] ⟶ (A)[1(𝕀)])})


Proof




Definitions occuring in Statement :  transport-fun: transport-fun(Gamma;A;cA) composition-op: Gamma ⊢ CompOp(A) interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-fun: (A ⟶ B) csm-id-adjoin: [u] cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B transport-fun: transport-fun(Gamma;A;cA) cubical-type: {X ⊢ _} interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap-type: (AF)s cc-fst: p interval-type: 𝕀 csm+: tau+ csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) cc-snd: q constant-cubical-type: (X) csm-comp: F pi2: snd(t) compose: g pi1: fst(t) interval-1: 1(𝕀) all: x:A. B[x] implies:  Q squash: T true: True
Lemmas referenced :  composition-op_wf cube-context-adjoin_wf interval-type_wf cubical-type-cumulativity2 cubical-type_wf cubical_set_cumulativity-i-j cubical_set_wf cubical-lambda_wf csm-ap-type_wf csm-id-adjoin_wf-interval-0 csm-id-adjoin_wf-interval-1 cc-fst_wf transport_wf csm+_wf_interval csm-composition_wf cc-snd_wf cubical-fun-as-cubical-pi cubical-term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut universeIsType thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule setElimination rename productElimination equalityTransitivity equalitySymmetry lambdaEquality_alt hyp_replacement inhabitedIsType lambdaFormation_alt imageElimination natural_numberEquality imageMemberEquality baseClosed cumulativity universeEquality equalityIstype dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].
    (transport-fun(Gamma;A;cA)  \mmember{}  \{Gamma  \mvdash{}  \_:((A)[0(\mBbbI{})]  {}\mrightarrow{}  (A)[1(\mBbbI{})])\})



Date html generated: 2020_05_20-PM-04_18_31
Last ObjectModification: 2020_04_11-PM-06_37_44

Theory : cubical!type!theory


Home Index