Nuprl Lemma : unglue-term-1

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[T:{Gamma, phi ⊢ _}]. ∀[w:{Gamma, phi ⊢ _:(T ⟶ A)}].
[b:{Gamma ⊢ _:Glue [phi ⊢→ (T;w)] A}].
  unglue(b) app(w; b) ∈ {Gamma ⊢ _:A} supposing phi 1(𝔽) ∈ {Gamma ⊢ _:𝔽}


Proof




Definitions occuring in Statement :  unglue-term: unglue(b) glue-type: Glue [phi ⊢→ (T;w)] A context-subset: Gamma, phi face-1: 1(𝔽) face-type: 𝔽 cubical-app: app(w; u) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} squash: T subtype_rel: A ⊆B true: True guard: {T} prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  unglue-term_wf2 face-1_wf istype-cubical-term glue-type_wf context-subset_wf cubical-fun_wf thin-context-subset cubical-type_wf face-type_wf cubical_set_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-term-eqcd subset-cubical-term context-1-subset subtype_rel_wf squash_wf true_wf istype-universe cubical-term_wf iff_weakening_equal
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality equalityIstype inhabitedIsType universeIsType instantiate applyLambdaEquality setElimination rename sqequalRule imageMemberEquality baseClosed imageElimination equalitySymmetry applyEquality because_Cache natural_numberEquality equalityTransitivity independent_isectElimination lambdaEquality_alt universeEquality productElimination independent_functionElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{Gamma,  phi  \mvdash{}  \_\}].
\mforall{}[w:\{Gamma,  phi  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[b:\{Gamma  \mvdash{}  \_:Glue  [phi  \mvdash{}\mrightarrow{}  (T;w)]  A\}].
    unglue(b)  =  app(w;  b)  supposing  phi  =  1(\mBbbF{})



Date html generated: 2020_05_20-PM-05_46_01
Last ObjectModification: 2020_04_21-PM-07_48_28

Theory : cubical!type!theory


Home Index