Nuprl Lemma : unglue-term-1
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[T:{Gamma, phi ⊢ _}]. ∀[w:{Gamma, phi ⊢ _:(T ⟶ A)}].
∀[b:{Gamma ⊢ _:Glue [phi ⊢→ (T;w)] A}].
  unglue(b) = app(w; b) ∈ {Gamma ⊢ _:A} supposing phi = 1(𝔽) ∈ {Gamma ⊢ _:𝔽}
Proof
Definitions occuring in Statement : 
unglue-term: unglue(b)
, 
glue-type: Glue [phi ⊢→ (T;w)] A
, 
context-subset: Gamma, phi
, 
face-1: 1(𝔽)
, 
face-type: 𝔽
, 
cubical-app: app(w; u)
, 
cubical-fun: (A ⟶ B)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
true: True
, 
guard: {T}
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
unglue-term_wf2, 
face-1_wf, 
istype-cubical-term, 
glue-type_wf, 
context-subset_wf, 
cubical-fun_wf, 
thin-context-subset, 
cubical-type_wf, 
face-type_wf, 
cubical_set_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-term-eqcd, 
subset-cubical-term, 
context-1-subset, 
subtype_rel_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-term_wf, 
iff_weakening_equal
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityIstype, 
inhabitedIsType, 
universeIsType, 
instantiate, 
applyLambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalitySymmetry, 
applyEquality, 
because_Cache, 
natural_numberEquality, 
equalityTransitivity, 
independent_isectElimination, 
lambdaEquality_alt, 
universeEquality, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{Gamma,  phi  \mvdash{}  \_\}].
\mforall{}[w:\{Gamma,  phi  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[b:\{Gamma  \mvdash{}  \_:Glue  [phi  \mvdash{}\mrightarrow{}  (T;w)]  A\}].
    unglue(b)  =  app(w;  b)  supposing  phi  =  1(\mBbbF{})
Date html generated:
2020_05_20-PM-05_46_01
Last ObjectModification:
2020_04_21-PM-07_48_28
Theory : cubical!type!theory
Home
Index