Nuprl Lemma : unit-path-type
∀[G:j⊢]. ∀[x,y:{G ⊢ _:1}].  ∀a,b:{G ⊢ _:(Path_1 x y)}.  (a = b ∈ {G ⊢ _:(Path_1 x y)})
Proof
Definitions occuring in Statement : 
path-type: (Path_A a b)
, 
cubical-unit: 1
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
paths-equal, 
cubical-unit_wf, 
path-type-subtype, 
cubical-term_wf, 
path-type_wf, 
cubical_set_wf, 
unit-pathtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
independent_isectElimination, 
inhabitedIsType, 
universeIsType, 
instantiate, 
lambdaEquality_alt, 
dependent_functionElimination, 
axiomEquality, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
because_Cache
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[x,y:\{G  \mvdash{}  \_:1\}].    \mforall{}a,b:\{G  \mvdash{}  \_:(Path\_1  x  y)\}.    (a  =  b)
Date html generated:
2020_05_20-PM-03_34_49
Last ObjectModification:
2020_04_06-PM-06_59_59
Theory : cubical!type!theory
Home
Index