Nuprl Lemma : unit-path-type

[G:j⊢]. ∀[x,y:{G ⊢ _:1}].  ∀a,b:{G ⊢ _:(Path_1 y)}.  (a b ∈ {G ⊢ _:(Path_1 y)})


Proof




Definitions occuring in Statement :  path-type: (Path_A b) cubical-unit: 1 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  paths-equal cubical-unit_wf path-type-subtype cubical-term_wf path-type_wf cubical_set_wf unit-pathtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule independent_isectElimination inhabitedIsType universeIsType instantiate lambdaEquality_alt dependent_functionElimination axiomEquality functionIsTypeImplies isect_memberEquality_alt isectIsTypeImplies because_Cache

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[x,y:\{G  \mvdash{}  \_:1\}].    \mforall{}a,b:\{G  \mvdash{}  \_:(Path\_1  x  y)\}.    (a  =  b)



Date html generated: 2020_05_20-PM-03_34_49
Last ObjectModification: 2020_04_06-PM-06_59_59

Theory : cubical!type!theory


Home Index